[1] J. Dong, S.L. Zhang, W.Z. Sun, Z.M. Xu, L. Zhao, Liquid-phase oxidation kinetics of sec-butylbenzene, CIESC J. 69 (2018) 249-257. (in Chinese) [2] Y. Wang, Investigation of sec-butylbenzene synthesis from the alkylation of benzene with butylene, Master Thesis, Beijing University of Chemical Technology, China, 2010. [3] X.J. Huang, K.M. Fu, Y.C. Hu, B. Zou, Y. Hu, Alkylation of benzene with 1-butylene over β-zeolite modified by Fe or La, CIESC J. 60 (10) (2009) 2497–2502. (in Chinese) [4] G.A. Baker, S.N. Baker, S. Pandey, F.V. Bright, An analytical view of ionic liquids, Analyst 130 (6) (2005) 800–808. [5] Y.N. Cui, J.M. Yin, C.P. Li, S.M. Li, A.L. Wang, G. Yang, Y.P. Jia, Experimental and theoretical studies on compositions, structures, and IR and NMR spectra of functionalized protic ionic liquids, Phys. Chem. Chem. Phys. 18 (29) (2016) 19731–19737. [6] N.V. Plechkova, K.R. Seddon, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev. 37 (1) (2008) 123–150. [7] Z.G. Lei, B.H. Chen, Y.M. Koo, D.R. MacFarlane, Introduction: Ionic liquids, Chem. Rev. 117 (10) (2017) 6633–6635. [8] H.H. Zhang, R.X. Liu, Z.Q. Yang, F. Huo, R.R. Zhang, Z.H. Li, S.J. Zhang, Y.J. Wang, Alkylation of isobutane/butene promoted by fluoride-containing ionic liquids, Fuel 211 (2018) 233–240. [9] H.H. Zhang, R.X. Liu, R.R. Zhang, F. Huo, Z.Q. Yang, B. He, S.J. Zhang, Y.J. Wang, Stability, acidity and interaction properties of [Bmim][SbF6] coupled with concentrated sulfuric acid, Sci. China Chem. 60 (9) (2017) 1243–1249. [10] R.I. Aminov, A.S. Mazitova, R.I. Khusnutdinov, Benzene alkylation with cycloolefins under the action of [Et3NH]+[Al2Cl7]– ionic liquid, Russ. J. Gen. Chem. 89 (11) (2019) 2171–2177. [11] C.Z. Qiao, Y.F. Zhang, J.C. Zhang, C.Y. Li, Activity and stability investigation of [Bmim][AlCl4] ionic liquid as catalyst for alkylation of benzene with 1-dodecene, Appl. Catal. A: Gen. 276 (1–2) (2004) 61–66. [12] G.P. Qi, F. Jiang, X.W. Sun, S.Q. Zhao, Alkylation mechanism of benzene with 1-dodecene catalyzed by Et3NHCl-AlCl3, Sci. China Chem. 53 (5) (2010) 1102–1107. [13] C.Z. Qiao, C.Y. Li, Continuous reaction performances of benzene alkylation with long chain olefins catalyzed by ionic liquid, Front. Chem. Eng. China 2 (1) (2008) 69–73. [14] W.Z. Zheng, H.Y. Wang, W.X. Xie, L. Zhao, W.Z. Sun, Understanding interfacial behaviors of isobutane alkylation with C4 olefin catalyzed by sulfuric acid or ionic liquids, AIChE J. 64 (3) (2018) 950–960. [15] W.Z. Zheng, W.X. Xie, W.Z. Sun, L. Zhao, Modeling of the interfacial behaviors for the isobutane alkylation with C4 olefin using ionic liquid as catalyst, Chem. Eng. Sci. 166 (2017) 42–52. [16] M.J. Frisch, G.W. Trucks, J. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, H.B. Schlegel, G. Scalmani, V. Barone, B. Mennucci, Gaussian 09, Revision C.01, Gaussian Inc. Wallingford, USA, 2010. [17] J.M. Martínez, L. Martínez, Packing optimization for automated generation of complex system's initial configurations for molecular dynamics and docking, J.Comput. Chem. 24 (7) (2003) 819–825. [18] D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, GROMACS: Fast, flexible, and free, J. Comput. Chem. 26 (16) (2005) 1701–1718. [19] W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. 118 (45) (1996) 11225–11236. [20] W.Z. Zheng, C.Z. Huang, W.Z. Sun, L. Zhao, Microstructures of the sulfonic acid-functionalized ionic liquid/sulfuric acid and their interactions: A perspective from the isobutane alkylation, J. Phys. Chem. B 122 (4) (2018) 1460–1470. [21] W.Z. Zheng, Z. Wang, W.Z. Sun, L. Zhao, F. Qian, H2SO4-catalyzed isobutane alkylation under low temperatures promoted by long-alkyl-chain surfactant additives, AIChE J. 67 (10) (2021), 17349. [22] F.B. Sprow, Role of interfacial area in sulfuric acid alkylation, Ind. Eng. Chem.Process. Des. Dev. 8 (2) (1969) 254–257. [23] D.J. Ende, R.E. Eckert, L.F. Albright, Interfacial area of dispersions of sulfuric acid and hydrocarbons, Ind. Eng. Chem. Res. 34 (12) (1995) 4343–4350. [24] L.F. Albright, Alkylation of isobutane with C3-C5 olefins to produce high-quality gasolines: Physicochemical sequence of events, Ind. Eng. Chem. Res. 42 (19) (2003) 4283–4289. [25] W.Z. Zheng, L. Zheng, W.Z. Sun, L. Zhao, Screening of imidazolium ionic liquids for the isobutane alkylation based on molecular dynamic simulation, Chem. Eng. Sci. 183 (2018) 115–122. [26] S. Palchowdhury, B.L. Bhargava, Segregation of ions at the interface: Molecular dynamics studies of the bulk and liquid–vapor interface structure of equimolar binary mixtures of ionic liquids, Phys. Chem. Chem. Phys. 17 (30) (2015) 19919–19928. [27] B.L. Bhargava, S. Balasubramanian, Layering at an ionic liquid–vapor interface: A molecular dynamics simulation study of [Bmim][PF6], J. Am. Chem. Soc. 128 (31) (2006) 10073–10078. [28] D.S. Frost, L.L. Dai, Molecular dynamics simulations of nanoparticle self-assembly at ionic liquid–water and ionic liquid–oil interfaces, Langmuir 27 (18) (2011) 11339–11346. [29] A. Ghoufi, I. Hureau, D. Morineau, R. Renou, A. Szymczyk, Confinement of tert-butanol nanoclusters in hydrophilic and hydrophobic silica nanopores, J. Phys. Chem. C 117 (29) (2013) 15203–15212. [30] S. Kerisit, C.X. Liu, Molecular simulations of water and ion diffusion in nanosized mineral fractures, Environ. Sci. Technol. 43 (3) (2009) 777–782. [31] I.C. Bourg, C.I. Steefel, Molecular dynamics simulations of water structure and diffusion in silica nanopores, J. Phys. Chem. C 116 (21) (2012) 11556–11564. |