[1] T. Li, T. Shoinkhorova, J. Gascon, J. Ruiz-Martínez, Aromatics production via methanol-mediated transformation routes, ACS Catal. 11 (13) (2021) 7780–7819.Doi: 10.1021/acscatal.1c01422 [2] S.S. Ali, H.A. Zaidi, Experimental and kinetic modeling studies of methanol transformation to hydrocarbons using zeolite-based catalysts: a review, Energy Fuels 34 (11) (2020) 13225–13246.Doi: 10.1021/acs.energyfuels.0c02373 [3] X.D. Zhang, K. Yue, R.Z. Rao, J.F. Chen, Q. Liu, Y. Yang, F.K. Bi, Y.X. Wang, J.C. Xu, N. Liu, Synthesis of acidic MIL-125 from plastic waste: significant contribution of N orbital for efficient photocatalytic degradation of chlorobenzene and toluene, Appl. Catal. B Environ. 310 (2022) 121300.Doi: 10.1016/j.apcatb.2022.121300 [4] N.P. Lin, Y.S. Gong, R.T. Wang, Y. Wang, X.D. Zhang, Critical review of perovskite-based materials in advanced oxidation system for wastewater treatment: Design, applications and mechanisms, J. Hazard. Mater. 424 (2022) 127637.https://pubmed.ncbi.nlm.nih.gov/34753649/ [5] A. Asghari, M.K. Khorrami, S.H. Kazemi, Hierarchical H-ZSM5 zeolites based on natural kaolinite as a high-performance catalyst for methanol to aromatic hydrocarbons conversion, Sci. Rep. 9 (2019) 17526.https://www.nature.com/articles/s41598-019-54089-y [6] R.Z. Chu, D.G. Yang, X.L. Meng, S. Yu, Y.Z. Wan, J.X. Wu, J. Wang, Effect of surface structure and adsorption activity on implanting of b-oriented ZSM-5 zeolite film on modified α-quartz substrate, Front. Chem. 7 (2019) 636.https://pubmed.ncbi.nlm.nih.gov/31620429/ [7] M. Juybar, M. Kanmohammadi Khorrami, A. Bagheri Garmarudi, Conversion of methanol to aromatics over ZSM-5/11 intergrowth zeolites and bimetallic Zn-Cu-ZSM-5/11 and Ga-Ag-ZSM-5/11 catalysts prepared with direct synthesis method, J. Chem. Sci. 131 (10) (2019) 1–14.Doi: 10.1007/s12039-019-1684-8 [8] K. Shen, N. Wang, X.D. Chen, Z.H. Chen, Y.W. Li, J.Y. Chen, W.Z. Qian, F. Wei, Seed-induced and additive-free synthesis of oriented nanorod-assembled meso/macroporous zeolites: toward efficient and cost-effective catalysts for the MTA reaction, Catal. Sci. Technol. 7 (21) (2017) 5143–5153.Doi: 10.1039/c7cy01647f [9] E. Catizzone, Z. Cirelli, A. Aloise, P. Lanzafame, M. Migliori, G. Giordano, Methanol conversion over ZSM-12, ZSM-22 and EU-1 zeolites: from DME to hydrocarbons production, Catal. Today 304 (2018) 39–50.Doi: 10.1016/j.cattod.2017.08.037 [10] S. Laforge, P. Ayrault, D. Martin, M. Guisnet, Acidic and catalytic properties of MCM-22 and MCM-36 zeolites synthesized from the same precursors, Appl. Catal. A Gen. 279 (1–2) (2005) 79–88.Doi: 10.1016/j.apcata.2004.10.015 [11] M. Bjørgen, F. Joensen, K.P. Lillerud, U. Olsbye, S. Svelle, The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta, Catal. Today 142 (1–2) (2009) 90–97.Doi: 10.1016/j.cattod.2009.01.015 [12] J.X. Wu, X.L. Meng, R.Z. Chu, S. Yu, Y.Z. Wan, C.C. Song, G.F. Zhang, T. Zhao, Molecular dynamics simulation of the implantation of b-oriented ZSM-5 film modified α-quartz substrate surface with different modifiers, Front. Chem. 7 (2019) 746.https://pubmed.ncbi.nlm.nih.gov/31781538/ [13] N. Li, C. Meng, D.H. Liu, Deactivation kinetics with activity coefficient of the methanol to aromatics process over modified ZSM-5, Fuel 233 (2018) 283–290.Doi: 10.1016/j.fuel.2018.06.044 [14] J. Han, G.J. Yang, H. Ding, X.X. Chen, Revealing inherent factors of SAPO-34 zeolites etching towards the fabrication of hierarchical structure, Microporous Mesoporous Mater. 319 (2021) 111067.Doi: 10.1016/j.micromeso.2021.111067 [15] C.H. Christensen, K. Johannsen, I. Schmidt, C.H. Christensen, Catalytic benzene alkylation over mesoporous zeolite single crystals: improving activity and selectivity with a new family of porous materials, J. Am. Chem. Soc. 125 (44) (2003) 13370–13371.https://pubmed.ncbi.nlm.nih.gov/14583028/ [16] Z.H. Wei, L.F. Chen, Q.S. Cao, Z.H. Wen, Z. Zhou, Y.R. Xu, X.D. Zhu, Steamed Zn/ZSM-5 catalysts for improved methanol aromatization with high stability, Fuel Process. Technol. 162 (2017) 66–77.Doi: 10.1016/j.fuproc.2017.03.026 [17] J.W. Wang, X.F. Gao, G.L. Chen, C.M. Ding, Forming pure shaped ZSM-5 zeolite bodies by a steam-assisted method and their application in methanol to aromatic reactions, RSC Adv. 9 (49) (2019) 28451–28459.https://pubmed.ncbi.nlm.nih.gov/35529639/ [18] F. Zhou, Y. Gao, H.X. Ma, G. Wu, C.T. Liu, Catalytic aromatization of methanol over post-treated ZSM-5 zeolites in the terms of pore structure and acid sites properties, Mol. Catal. 438 (2017) 37–46.Doi: 10.1016/j.mcat.2017.05.018 [19] Y.S. Tao, H. Kanoh, K. Kaneko, ZSM-5 monolith of uniform mesoporous channels, J. Am. Chem. Soc. 125 (20) (2003) 6044–6045.https://pubmed.ncbi.nlm.nih.gov/12785820/ [20] K. Wang, M. Dong, X.J. Niu, J.F. Li, Z.F. Qin, W.B. Fan, J.G. Wang, Highly active and stable Zn/ZSM-5 zeolite catalyst for the conversion of methanol to aromatics: effect of support morphology, Catal. Sci. Technol. 8 (21) (2018) 5646–5656.Doi: 10.1039/c8cy01734d [21] D.H. Pan, X.H. Song, X.H. Yang, L.J. Gao, R.P. Wei, J. Zhang, G.M. Xiao, Efficient and selective conversion of methanol to Para-xylene over stable H[Zn, Al]ZSM-5/SiO2 composite catalyst, Appl. Catal. A Gen. 557 (2018) 15–24.Doi: 10.1016/j.apcata.2018.03.006 [22] J.X. Wu, X.L. Meng, R.Z. Chu, D.G. Yang, X. Li, S. Yu, J. Wang, Structural effects and catalytic performance of Pd catalysts with micro-mesoporous structure on coal tar hydrodesulfurization, Microporous Mesoporous Mater. 316 (2021) 110977.Doi: 10.1016/j.micromeso.2021.110977 [23] X.J. Niu, J. Gao, K. Wang, Q. Miao, M. Dong, G.F. Wang, W.B. Fan, Z.F. Qin, J.G. Wang, Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics, Fuel Process. Technol. 157 (2017) 99–107.Doi: 10.1016/j.fuproc.2016.12.006 [24] Y.K. Zhang, Y.X. Qu, D.L. Wang, X.C. Zeng, J.D. Wang, Cadmium modified HZSM-5: a highly efficient catalyst for selective transformation of methanol to aromatics, Ind. Eng. Chem. Res. 56 (44) (2017) 12508–12519.Doi: 10.1021/acs.iecr.7b02908 [25] Z.Y. Liu, L. Zhang, M. Wei, K. Wang, H.Y. Wang, Study on preparation of hierarchical porous ZSM-5/SAPO-34 composite molecular sieve and its catalytic performance for methanol aromatization, Appl. Chem. Ind. (2014) 43(11)1977–1980.(in Chinese)https://kns.cnki.net/KCMS/detail/detail.aspx?filename=SXHG201411011&dbname=CJFD&dbcode=CJFQhttps://oversea.cnki.net/KCMS/detail/detail.aspx?filename=SXHG201411011&dbname=CJFD&dbcode=CJFQ [26] Y. Yu, L. Zhang, M. Wei, H.Y. Wang, Preparation of SAPO-34/ZSM-5 composite zeolite and its performance in methanol aromatization reaction, Appl. Chem. Ind. (2015) 44(3)434–437, 441. (in Chinese) [27] W. Wang, M. Hunger, Reactivity of surface alkoxy species on acidic zeolite catalysts, Acc. Chem. Res. 41 (8) (2008) 895–904.https://pubmed.ncbi.nlm.nih.gov/18605741/ [28] J.F. Haw, W.G. Song, D.M. Marcus, J.B. Nicholas, The mechanism of methanol to hydrocarbon catalysis, Acc. Chem. Res. 36 (5) (2003) 317–326.https://pubmed.ncbi.nlm.nih.gov/12755641/ [29] I.M. Dahl, S. Kolboe, On the reaction mechanism for propene formation in the MTO reaction over SAPO-34, Catal. Lett. 20 (3–4) (1993) 329–336.Doi: 10.1007/BF00769305 [30] M. Bjørgen, U. Olsbye, D. Petersen, S. Kolboe, The methanol-to-hydrocarbons reaction: insight into the reaction mechanism from[12C]benzene and[13C]methanol coreactions over zeolite H-beta, J. Catal. 221 (1) (2004) 1–10.Doi: 10.1016/S0021-9517(03)00284-7 [31] W.G. Song, J.F. Haw, J.B. Nicholas, C.S. Heneghan, Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34, J. Am. Chem. Soc. 122 (43) (2000) 10726–10727.Doi: 10.1021/ja002195g [32] M. Bjørgen, S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, L. Palumbo, S. Bordiga, U. Olsbye, Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species, J. Catal. 249 (2) (2007) 195–207.Doi: 10.1016/j.jcat.2007.04.006 [33] G. Caeiro, R.H. Carvalho, X. Wang, M.A.N.D.A. Lemos, F. Lemos, M. Guisnet, F.R. Ribeiro, Activation of C2-C4 alkanes over acid and bifunctional zeolite catalysts, J. Mol. Catal. A Chem. 255 (1–2) (2006) 131–158.Doi: 10.1016/j.molcata.2006.03.068 [34] C.X. Wang, J.X. Wu, D.G. Yang, W. Li, X. Li, G.G. Wu, R.Z. Chu, X.L. Meng, Effect of surface modification on SAPO-34 loading on ZSM-5 film for MTA reaction, Microporous Mesoporous Mater. 332 (2022) 111663.Doi: 10.1016/j.micromeso.2021.111663 [35] X. Li, F. Rezaei, D.K. Ludlow, A.A. Rownaghi, Synthesis of SAPO-34@ZSM-5 and SAPO-34@Silicalite-1 core-shell zeolite composites for ethanol dehydration, Ind. Eng. Chem. Res. 57 (5) (2018) 1446–1453.Doi: 10.1021/acs.iecr.7b05075 [36] B. Arstad, A. Lind, J.H. Cavka, K. Thorshaug, D. Akporiaye, D. Wragg, H. Fjellvåg, A. Grønvold, T. Fuglerud, Structural changes in SAPO-34 due to hydrothermal treatment. A NMR, XRD, and DRIFTS study, Microporous Mesoporous Mater. 225 (2016) 421–431.Doi: 10.1016/j.micromeso.2016.01.024 [37] X.D. Zhang, S. Xiang, Q.X. Du, F.K. Bi, K.L. Xie, L. Wang, Effect of calcination temperature on the structure and performance of rod-like MnCeOx derived from MOFs catalysts, Mol. Catal. 522 (2022) 112226.Doi: 10.1016/j.mcat.2022.112226 [38] M. Ghavipour, A.S. Mehr, Y. Wang, R.M. Behbahani, S. Hajimirzaee, K. Bahrami, Investigating the mixing sequence and the Si content in SAPO-34 synthesis for selective conversion of methanol to light olefins using morpholine &/TEAOH templates, RSC Adv. 6 (21) (2016) 17583–17594.Doi: 10.1039/c5ra23432h [39] D. Barthomeuf, Topological model for the compared acidity of SAPOs and SiAl zeolites, Zeolites 14 (6) (1994) 394–401.Doi: 10.1016/0144-2449(94)90164-3 [40] J. Tan, Z.M. Liu, X.H. Bao, X.C. Liu, X.W. Han, C.Q. He, R.S. Zhai, Crystallization and Si incorporation mechanisms of SAPO-34, Microporous Mesoporous Mater. 53 (1–3) (2002) 97–108.Doi: 10.1016/S1387-1811(02)00329-3 [41] W.L. Shen, X. Li, Y.X. Wei, P. Tian, F. Deng, X.W. Han, X.H. Bao, A study of the acidity of SAPO-34 by solid-state NMR spectroscopy, Microporous Mesoporous Mater. 158 (2012) 19–25.Doi: 10.1016/j.micromeso.2012.03.013 [42] M. Li, C.F. Zeng, L.X. Zhang, Hydrothermal synthesis of SAPO-5 with novel morphologies from hydrogels containing acetic acid and high concentration of triethylamine under neutral or alkaline conditions, CrystEngComm 14 (10) (2012) 3787.Doi: 10.1039/c2ce06645a [43] W.L. Jin, B.J. Wang, P.F. Tuo, C. Li, L. Li, H.J. Zhao, X.H. Gao, B.J. Shen, Selective desilication, mesopores formation, and MTO reaction enhancement via citric acid treatment of zeolite SAPO-34, Ind. Eng. Chem. Res. 57 (12) (2018) 4231–4236.Doi: 10.1021/acs.iecr.8b00632 |