中国化学工程学报 ›› 2023, Vol. 57 ›› Issue (5): 233-246.DOI: 10.1016/j.cjche.2022.08.013
• Full Length Article • 上一篇 下一篇
Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao
收稿日期:
2022-03-12
修回日期:
2022-08-25
出版日期:
2023-05-28
发布日期:
2023-07-08
通讯作者:
Shengtao Zhang,E-mail:stzhang@cqu.edu.cn;Fang Gao,E-mail:fgao@cqu.edu.cn
基金资助:
Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao
Received:
2022-03-12
Revised:
2022-08-25
Online:
2023-05-28
Published:
2023-07-08
Contact:
Shengtao Zhang,E-mail:stzhang@cqu.edu.cn;Fang Gao,E-mail:fgao@cqu.edu.cn
Supported by:
摘要: In this study, the benign target double terpyridine parts based amphiphilic ionic molecules (AIMs 1, 2) and the reference single terpyridine segment included AIMs (AIMs 3, 4) were synthesized through a multi-step method, and the molecular structures were fully characterized. The excellent anticorrosion of the target AIMs for copper surface in H2SO4 solution was demonstrated by the electrochemistry analysis, which was more superior over those of the reference AIMs. The standard adsorption free energy changes of the target AIMs calculated by the adsorption isotherms were lower than –40 kJ·mol-1, suggesting an intensified chemical adsorption on metal surface. The molecular modeling and molecular dynamic computation of the studied AIMs were performed, demonstrating that the target AIMs exhibited lower highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps and greater adsorption energies than the reference ones. The chemical adsorption of the AIMs on metal surface was revealed by various spectroscopic methods including scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, attenuated total reflection infrared spectroscopy, Raman and X-ray diffraction.
Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution[J]. 中国化学工程学报, 2023, 57(5): 233-246.
Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution[J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246.
[1] N. Nikfarjam, M. Ghomi, T. Agarwal, M. Hassanpour, E. Sharifi, D. Khorsandi, M. Ali Khan, F. Rossi, A. Rossetti, E. Nazarzadeh Zare, N. Rabiee, D. Afshar, M. Vosough, T. Kumar Maiti, V. Mattoli, E. Lichtfouse, F.R. Tay, P. Makvandi, Antimicrobial ionic liquid-based materials for biomedical applications, Adv. Funct. Mater. 31 (42) (2021) 2104148. [2] R. Ciriminna, V. Pandarus, F. Béland, Y.J. Xu, M. Pagliaro, Heterogeneously catalyzed alcohol oxidation for the fine chemical industry, Org. Process. Res. Dev. 19 (11) (2015) 1554–1558. [3] E. Kowsari, S.Y. Arman, M.H. Shahini, H. Zandi, A. Ehsani, R. Naderi, A. PourghasemiHanza, M. Mehdipour, In situ synthesis, electrochemical and quantum chemical analysis of an amino acid-derived ionic liquid inhibitor for corrosion protection of mild steel in 1M HCl solution, Corros. Sci. 112 (2016) 73–85. [4] M. Asif, S. Kilian, M. Rashad, Uncovering electrochemistries of rechargeable magnesium-ion batteries at low and high temperatures, Energy Storage Mater. 42 (2021) 129–144. [5] E.E. Foad El Sherbini, Effect of some ethoxylated fatty acids on the corrosion behaviour of mild steel in sulphuric acid solution, Mater. Chem. Phys. 60 (3) (1999) 286–290. [6] Q.H. Wang, Q.Y. Wang, Z.H. Ni, H.B. Bao, X.M. Li, Evaluation of corrosion inhibition to Pteridium aquilinum extract via the methods of electrochemistry experiment, Mater. Res. Express 6 (12) (2019) 125504. [7] C. Verma, E.E. Ebenso, M.A. Quraishi, Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: An overview, J. Mol. Liq. 233 (2017) 403–414. [8] K. Dong, X. Peng, Z.L. Wang, Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence, Adv. Mater. 32 (5) (2020) e1902549. [9] R.J. Zuo, Biofilms: Strategies for metal corrosion inhibition employing microorganisms, Appl. Microbiol. Biotechnol. 76 (6) (2007) 1245–1253. [10] E.S.M. Sherif, R.M. Erasmus, J.D. Comins, Corrosion of copper in aerated synthetic sea water solutions and its inhibition by 3-amino-1, 2, 4-triazole, J. Colloid Interface Sci. 309 (2) (2007) 470–477. [11] G. Schmitt, Application of inhibitors for acid media: Report prepared for the European federation of corrosion working party on inhibitors, Br. Corros. J. 19 (4) (1984) 165–176. [12] T.P. Zhao, G.N. Mu, The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid, Corros. Sci. 41 (10) (1999) 1937–1944. [13] G. Gece, The use of quantum chemical methods in corrosion inhibitor studies, Corros. Sci. 50 (11) (2008) 2981–2992. [14] R. Padash, E. Jamalizadeh, A.H. Jafari, Adsorption and corrosion inhibition behavior of aluminium by 2, 6-di methyl pyridine in distilled water, Anti Corros. Methods Mater. 64 (5) (2017) 550–554. [15] R. Farahati, A. Ghaffarinejad, S.M. Mousavi-Khoshdel, J. Rezania, H. Behzadi, A. Shockravi, Synthesis and potential applications of some thiazoles as corrosion inhibitor of copper in 1 M HCl: Experimental and theoretical studies, Prog. Org. Coat. 132 (2019) 417–428. [16] Y.J. Qiang, H. Li, X.J. Lan, Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment, J. Mater. Sci. Technol. 52 (2020) 63–71. [17] E.E. Oguzie, Corrosion inhibition of aluminium in acidic and alkaline media by Sansevieria trifasciata extract, Corros. Sci. 49 (3) (2007) 1527–1539. [18] B.E. Brycki , I.H. Kowalczyk , A. Szulc , O. Kaczerewska , M. Pakiet , Organic corrosion inhibitors , Intech Open ( 2018 ). [19] S. Sharma, A. Kumar, Recent advances in metallic corrosion inhibition: A review, J. Mol. Liq. 322 (2021) 114862. [20] X.H. Wang, A.L. Huang, D.Q. Lin, M. Talha, H. Liu, Y.H. Lin, Imidazolium-based ionic liquid as efficient corrosion inhibitor for AA 6061 alloy in HCl solution, Materials 13 (20) (2020) 4672. [21] H.S. Su, Y. Liu, X. Gao, Y.F. Qian, W.J. Li, T.G. Ren, L. Wang, J.L. Zhang, Corrosion inhibition of magnesium alloy in NaCl solution by ionic liquid: Synthesis, electrochemical and theoretical studies, J. Alloys Compd. 791 (2019) 681–689. [22] W. Makulski, K. Jackowski, 1H, 13C and 29Si magnetic shielding in gaseous and liquid tetramethylsilane, J. Magn. Reson. 313 (2020) 106716. [23] J.W. Shi, L. Zeng, S. Nikzad, D.M. Koshy, A.S. Asundi, C. MacIsaac, S.F. Bent, Modulating the optoelectronic properties of hybrid Mo-thiolate thin films, J. Vac. Sci. Technol. A 40 (1) (2022) 012402. [24] A.W. Permana, I. Sampers, P. van der Meeren, Influence of virgin coconut oil on the inhibitory effect of emulsion-based edible coatings containing cinnamaldehyde against the growth of Colletotrichum gloeosporioides (Glomerella Cingulata), Food Control 121 (2021) 107622. [25] O.M.I. Adly, H.F. El-Shafiy, M. Shebl, Synthesis, spectroscopic studies, DFT calculations, antimicrobial and antitumor activity of tridentate NNO Schiff base metal complexes based on 5-acetyl-4-hydroxy-2H-1, 3-thiazine-2, 6(3H)-dione, J. Mol. Struct. 1196 (2019) 805–818. [26] R.D. Dennington , T.A. Keith , C.M. Millam , Gaussview 5.0, Wallingford CT (2009). [27] U. Abdulfatai, A. Uzairu, S. Uba, G.A. Shallangwa, Quantitative structure-properties relationship, molecular dynamic simulations and designs of some novel lubricant additives, Egypt. J. Petroleum 28 (2) (2019) 241–245. [28] D. Kumar, V. Jain, B. Rai, Imidazole derivatives as corrosion inhibitors for copper: A DFT and reactive force field study, Corros. Sci. 171 (2020) 108724. [29] L.H. Madkour, S. Kaya, I.B. Obot, Computational, Monte Carlo simulation and experimental studies of some arylazotriazoles (AATR) and their copper complexes in corrosion inhibition process, J. Mol. Liq. 260 (2018) 351–374. [30] J.H. Tan, L. Guo, D. Wu, S.F. Wang, R.R. Yu, F. Zhang, S. Kaya, Electrochemical and computational studies on the corrosion inhibition of mild steel by 1-hexadecyl-3-methylimidazolium bromide in HCl medium, Int. J. Electrochem. Sci. (2020) 1893–1903. [31] D.S. Chauhan, A.M. Kumar, M.A. Quraishi, Hexamethylenediamine functionalized glucose as a new and environmentally benign corrosion inhibitor for copper, Chem. Eng. Res. Des. 150 (2019) 99–115. [32] Y.J. Qiang, S.T. Zhang, L.P. Wang, Understanding the adsorption and anticorrosive mechanism of DNA inhibitor for copper in sulfuric acid, Appl. Surf. Sci. 492 (2019) 228–238. [33] P. Singh, V. Srivastava, M.A. Quraishi, Novel quinoline derivatives as green corrosion inhibitors for mild steel in acidic medium: Electrochemical, SEM, AFM, and XPS studies, J. Mol. Liq. 216 (2016) 164–173. [34] E.S. Ferreira, C. Giacomelli, F.C. Giacomelli, A. Spinelli, Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel, Mater. Chem. Phys. 83 (1) (2004) 129–134. [35] J. Haque, V. Srivastava, D.S. Chauhan, M.A. Quraishi, A.M. Kumar, H. Lgaz, Electrochemical and surface studies on chemically modified glucose derivatives as environmentally benign corrosion inhibitors, Sustain. Chem. Pharm. 16 (2020) 100260. [36] Y.J. Qiang, S.T. Zhang, L. Guo, X.W. Zheng, B. Xiang, S.J. Chen, Experimental and theoretical studies of four allyl imidazolium-based ionic liquids as green inhibitors for copper corrosion in sulfuric acid, Corros. Sci. 119 (2017) 68–78. [37] S. Lettieri, J.Q. Zeng, M.A. Farkhondehfal, U. Savino, M. Fontana, C.F. Pirri, A. Sacco, Correlation between impedance spectroscopy and bubble-induced mass transport in the electrochemical reduction of carbon dioxide, J. Energy Chem. 67 (2022) 500–507. [38] Y.T. Shi, Y. Fu, S.Y. Xu, H.J. Huang, S.T. Zhang, Z.Q. Wang, W.P. Li, H.R. Li, F. Gao, Strengthened adsorption and corrosion inhibition of new single imidazole-type ionic liquid molecules to copper surface in sulfuric acid solution by molecular aggregation, J. Mol. Liq. 338 (2021) 116675. [39] S. Shen, C.D. Zhu, X.Y. Guo, C.C. Li, Y. Wen, H.F. Yang, The synergistic mechanism of phytic acid monolayers and iodide ions for inhibition of copper corrosion in acidic media, RSC Adv. 4 (21) (2014) 10597–10606. [40] Y.M. Tang, F. Zhang, S.X. Hu, Z.Y. Cao, Z.L. Wu, W.H. Jing, Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part I: Gravimetric, electrochemical, SEM and XPS studies, Corros. Sci. 74 (2013) 271–282. [41] L.Z. Gao, S.N. Peng, X.M. Huang, Z.L. Gong, A combined experimental and theoretical study of papain as a biological eco-friendly inhibitor for copper corrosion in H2SO4 medium, Appl. Surf. Sci. 511 (2020) 145446. [42] C. Verma, L.O. Olasunkanmi, I.B. Obot, E.E. Ebenso, M.A. Quraishi, 2, 4-Diamino-5-(phenylthio)-5H-chromeno[2, 3-b]pyridine-3-carbonitriles as green and effective corrosion inhibitors: gravimetric, electrochemical, surface morphology and theoretical studies, RSC Adv. 6 (59) (2016) 53933–53948. [43] L. Feng, S.T. Zhang, Y. Lu, B.C. Tan, S.J. Chen, L. Guo, Synergistic corrosion inhibition effect of thiazolyl-based ionic liquids between anions and cations for copper in HCl solution, Appl. Surf. Sci. 483 (2019) 901–911. [44] N. Eliaz, Corrosion of metallic biomaterials: A review, Materials 12 (3) (2019) E407. [45] Y.L. Kobzar, K. Fatyeyeva, Ionic liquids as green and sustainable steel corrosion inhibitors: Recent developments, Chem. Eng. J. 425 (2021) 131480. [46] R. Ganjoo, A. Kumar, Current trends in anti-corrosion studies of surfactants on metals and alloys, J. Bio Tribo Corros. 8 (1) (2021) 1–35. [47] Y.T. Shi, Y. Fu, H.J. Huang, H.R. Li, S.T. Zhang, W.P. Li, F. Gao, New small gemini ionic liquids for intensifying adsorption and corrosion resistance of copper surface in sulfuric acid solution, J. Environ. Chem. Eng. 9 (6) (2021) 106679. [48] H. Li, S.T. Zhang, Y.J. Qiang, Corrosion retardation effect of a green cauliflower extract on copper in H2SO4 solution: Electrochemical and theoretical explorations, J. Mol. Liq. 321 (2021) 114450. [49] A. Yi, N. Mamaeva, H. Li, J.L. Spudich, K.J. Rothschild, Resonance Raman study of an anion channelrhodopsin: Effects of mutations near the retinylidene schiff base, Biochemistry 55 (16) (2016) 2371–2380. [50] H.J. Huang, Y. Fu, X.C. Wang, Y.C. Gao, Z.Q. Wang, S.T. Zhang, H.R. Li, F. Gao, L.Y. Chen, Nano- to micro-self-aggregates of new bisimidazole-based copoly(ionic liquid)s for protecting copper in aqueous sulfuric acid solution, ACS Appl. Mater. Interfaces 11 (10) (2019) 10135–10145. [51] S. Wan, H.K. Chen, B.K. Liao, X.P. Guo, Adsorption and anticorrosion mechanism of glucose-based functionalized carbon dots for copper in neutral solution, J. Taiwan Inst. Chem. Eng. 129 (2021) 289–298. [52] Z.Y. Cao, Y.M. Tang, H. Cang, J.Q. Xu, G. Lu, W.H. Jing, Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part II: Theoretical studies, Corros. Sci. 83 (2014) 292–298. [53] L. Li, R. Huang, X.R. Cao, Y.H. Wen, Computational screening of efficient graphene-supported transition metal single atom catalysts toward the oxygen reduction reaction, J. Mater. Chem. A 8 (37) (2020) 19319–19327. [54] H. Li, S. Kelly, D. Guevarra, Z.B. Wang, Y. Wang, J.A. Haber, M. Anand, G.T.K.K. Gunasooriya, C.S. Abraham, S. Vijay, J.M. Gregoire, J.K. Nørskov, Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces, Nat. Catal. 4 (6) (2021) 463–468. [55] Y.J. Yang, J. Liu, F. Liu, Z. Wang, D.W. Wu, FeS2-anchored transition metal single atoms for highly efficient overall water splitting: A DFT computational screening study, J. Mater. Chem. A 9 (4) (2021) 2438–2447. [56] J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B 108 (46) (2004) 17886–17892. [57] S.D. Tabatabaei, F. Ghiasi, H. Hashemi Gahruie, S.M.H. Hosseini, Effect of emulsified oil droplets and glycerol content on the physicochemical properties of Persian gum-based edible films, Polym. Test. 106 (2022) 107427. [58] A.N. Dominguez, G.E. Emmert, D.M. Gil, R. Álvarez, Experimental and theoretical vibrational study of the fungicide pyraclostrobin, Spectrochim. Acta A Mol. Biomol. Spectrosc. 259 (2021) 119888. [59] F. Zucchi, A. Frignani, V. Grassi, G. Trabanelli, M. DalColle, The formation of a protective layer of 3-mercapto-propyl-trimethoxy-silane on copper, Corros. Sci. 49 (3) (2007) 1570–1583. [60] W. Qafsaoui, M.W. Kendig, S. Joiret, H. Perrot, H. Takenouti, Ammonium pyrrolidine dithiocarbamate adsorption on copper surface in neutral chloride media, Corros. Sci. 106 (2016) 96–107. [61] B. Ramalingam, M.M.R. Khan, B. Mondal, A.B. Mandal, S.K. Das, Facile synthesis of silver nanoparticles decorated magnetic-chitosan microsphere for efficient removal of dyes and microbial contaminants, ACS Sustain. Chem. Eng. 3 (9) (2015) 2291–2302. [62] M. Arroussi, Q. Jia, C.G. Bai, S.Y. Zhang, J.L. Zhao, Z.Z. Xia, Z.Q. Zhang, K. Yang, R. Yang, Inhibition effect on microbiologically influenced corrosion of Ti-6Al-4V-5Cu alloy against marine bacterium Pseudomonas aeruginosa, J. Mater. Sci. Technol. 109 (2022) 282–296. [63] S.T. Zhang, Z.H. Tao, S.G. Liao, F.J. Wu, Substitutional adsorption isotherms and corrosion inhibitive properties of some oxadiazol-triazole derivative in acidic solution, Corros. Sci. 52 (9) (2010) 3126–3132. [64] W.P. Luo, S.T. Zhang, X.C. Wang, F. Gao, H.R. Li, Ionic macromolecules based on non-halide counter anions for super prevention of copper corrosion, J. Mol. Liq. 349 (2022) 118156. [65] A.K. Satapathy, G. Gunasekaran, S.C. Sahoo, K. Amit, P.V. Rodrigues, Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution, Corros. Sci. 51 (12) (2009) 2848–2856. [66] R. Solmaz, E. Altunbaş Şahin, A. Döner, G. Kardaş, The investigation of synergistic inhibition effect of rhodanine and iodide ion on the corrosion of copper in sulphuric acid solution, Corros. Sci. 53 (10) (2011) 3231–3240. [67] M.Y. Zhang, Y.Y. Sun, J.J. Shi, W.S. Ning, Z.Y. Hou, Selective glycerol oxidation using platinum nanoparticles supported on multi-walled carbon nanotubes and nitrogen-doped graphene hybrid, Chin. J. Catal. 38 (3) (2017) 537–544. [68] T. Kosec, D.K. Merl, I. Milošev, Impedance and XPS study of benzotriazole films formed on copper, copper–zinc alloys and zinc in chloride solution, Corros. Sci. 50 (7) (2008) 1987–1997. [69] Y.J. Xu, G. Weinberg, X. Liu, O. Timpe, R. Schlögl, D.S. Su, Nanoarchitecturing of activated carbon: Facile strategy for chemical functionalization of the surface of activated carbon, Adv. Funct. Mater. 18 (22) (2008) 3613–3619. [70] C.Y. Wang, X. Zhang, H.B. Qiu, G.X. Huang, H.Q. Yu, Bi24O31Br10 nanosheets with controllable thickness for visible-light-driven catalytic degradation of tetracycline hydrochloride, Appl. Catal. B Environ. 205 (2017) 615–623. [71] J. Xu, K.K. Wang, T. Liu, Y. Peng, B.G. Xu, Br-doped Bi2O2CO3 exposed (001) crystal facets with enhanced photocatalytic activity, CrystEngComm 19 (34) (2017) 5001–5007. [72] J.R. Zeng, C.C. Cheng, B.R. Huang, C.H. Huang, J.K. Chen, Pillar arrays of tethered polyvinyltetrazole on silicon as a visualization platform for sensing of lead ions, Sens. Actuat. B Chem. 243 (2017) 234–243. [73] B. Wang, J. Di, P.F. Zhang, J.X. Xia, S. Dai, H.M. Li, Ionic liquid-induced strategy for porous perovskite-like PbBiO2Br photocatalysts with enhanced photocatalytic activity and mechanism insight, Appl. Catal. B Environ. 206 (2017) 127–135. [74] S. García-Fernández, I. Gandarias, J. Requies, F. Soulimani, P.L. Arias, B.M. Weckhuysen, The role of tungsten oxide in the selective hydrogenolysis of glycerol to 1, 3-propanediol over Pt/WOx/Al2O3, Appl. Catal. B Environ. 204 (2017) 260–272. [75] N. Kumar, S.S. Parui, S. Limbu, D.K. Mahato, N. Tiwari, R.N. Chauhan, Structural and optical properties of sol–gel derived CuO and Cu2O nanoparticles, Mater. Today Proc. 41 (2021) 237–241. [76] H.J. Huang, Y. Fu, X.J. Mu, Z.P. Luo, S.T. Zhang, Z.Y. Wang, H.R. Li, F. Gao, Molecular self-assembly of novel amphiphilic topological hyperbranched polymers for super protection of copper in extremely aggressive acid solution, Appl. Surf. Sci. 529 (2020) 147076. [77] M. Askari, M. Aliofkhazraei, S. Ghaffari, A. Hajizadeh, Film former corrosion inhibitors for oil and gas pipelines—A technical review, J. Nat. Gas Sci. Eng. 58 (2018) 92–114. [78] T. Hashemi, C.A. Hogarth, The mechanism of corrosion inhibition of copper in NaCl solution by benzotriazole studied by electron spectroscopy, Electrochimica Acta 33 (8) (1988) 1123–1127. [79] M. Finšgar, 2-Phenylimidazole corrosion inhibitor on copper: An XPS and ToF-SIMS surface analytical study, Coatings 11 (8) (2021) 966. [80] R. Kefirov, A. Penkova, K. Hadjiivanov, S. Dzwigaj, M. Che, Stabilization of Cu+ ions in BEA zeolite: Study by FTIR spectroscopy of adsorbed CO and TPR, Microporous Mesoporous Mater. 116 (1–3) (2008) 180–187. [81] S. Duval, Architectures moléculaires, supramoléculaires et étendues construites à partir des propriétés de coordination du fragment {Mo3S4}: Synthèses, structures et propriétés en solution, Versailles-St Quentin en Yvelines, 2009. [82] A. León-Torres, E. Arango, E. Castillo, C.Y. Soto, CtpB is a plasma membrane copper (I) transporting P-type ATPase of Mycobacterium tuberculosis, Biol. Res. 53 (1) (2020) 6. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions[J]. 中国化学工程学报, 2023, 60(8): 26-36. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions[J]. 中国化学工程学报, 2023, 60(8): 108-117. |
[3] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study[J]. 中国化学工程学报, 2023, 60(8): 212-227. |
[4] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant[J]. 中国化学工程学报, 2023, 60(8): 228-234. |
[5] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures[J]. 中国化学工程学报, 2023, 60(8): 242-252. |
[6] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation[J]. 中国化学工程学报, 2023, 60(8): 262-274. |
[7] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants[J]. 中国化学工程学报, 2023, 60(8): 275-292. |
[8] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework[J]. 中国化学工程学报, 2023, 59(7): 9-15. |
[9] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine[J]. 中国化学工程学报, 2023, 59(7): 16-31. |
[10] | Minjie Shi, Nianting Chen, Yue Zhao, Cheng Yang, Chao Yan. Facile wet-chemical fabrication of bi-functional coordination polymer nanosheets for high-performance energy storage and anti-corrosion engineering[J]. 中国化学工程学报, 2023, 59(7): 118-127. |
[11] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application[J]. 中国化学工程学报, 2023, 59(7): 262-269. |
[12] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater[J]. 中国化学工程学报, 2023, 58(6): 124-136. |
[13] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites[J]. 中国化学工程学报, 2023, 57(5): 141-150. |
[14] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas[J]. 中国化学工程学报, 2023, 57(5): 265-279. |
[15] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes[J]. 中国化学工程学报, 2023, 57(5): 309-318. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||