[1] P. Zhou, D.W. Guo, H. Wang, T.Y. Chai, Data-driven robust M-LS-SVR-based NARX modeling for estimation and control of molten iron quality indices in blast furnace ironmaking, IEEE Trans. Neural Netw. Learn. Syst. 29 (9) (2018) 4007-4021. [2] L.M. Zhang, C.C. Hua, J.P. Li, X.P. Guan, Operation status prediction based on top gas system analysis for blast furnace, IEEE Trans. Control Syst. Technol. 25 (1) (2017) 262-269. [3] M. Kano, S. Tanaka, S. Hasebe, I. Hashimoto, H. Ohno, Combined multivariate statistical process control, IFAC Proc. Vol. 37 (1) (2004) 281-286. [4] J.Min. Lee, ChangKyoo Yoo, Sang Wook Choi, Peter A. Vanrolleghem, In-Beum Lee, Nonlinear process monitoring using kernel principal component analysis, Chem. Eng. Sci. 59 (1) (2004) 223-234. [5] L.M. Liu, An-na Wang, Mo Sha, Feng-yun Zhao, Multi-class classification methods of cost-conscious LS-SVM for fault diagnosis of blast furnace, J. Iron Steel Res. Int. 18 (10) (2011) 17-33. [6] L.M. Liu, A.N. Wang, M. Sha, X.Y. Sun, Y.L. Li, Optional SVM for fault diagnosis of blast furnace with imbalanced data, ISIJ Int. 51 (9) (2011) 1474-1479. [7] Z.Q. Ge, Z.H. Song, F.R. Gao, Review of recent research on data-based process monitoring, Ind. Eng. Chem. Res. 52 (10) (2013) 3543-3562. [8] P. Zhou, Modeling error PDF optimization based wavelet neural network modeling of dynamic system and its application in blast furnace ironmaking, Neurocomputing 285 (2018) 167-175. [9] H. Zhou, C.J. Yang, Y.X. Sun, A collaborative optimization strategy for energy reduction in ironmaking digital twin, IEEE Access 8177570-177579. [10] R.Q. An, C.J. Yang, Y.J. Pan, Graph-based method for fault detection in the iron-making process, IEEE Access 840171-40179. [11] L. Shao, F. Zhu, X.L. Li, Transfer learning for visual categorization: A survey, IEEE Trans. Neural Netw. Learn. Syst. 26 (5) (2015) 1019-1034. [12] M. Long, J.M. Wang, Learning transferable features with deep adaptation networks, International Conference on Machine Learning, Lile, France, 2015, pp. 97 - 105. [13] J.D. Wang, Y.Q. Chen, S.J. Hao, W.J. Feng, Z.Q. Shen, Balanced distribution adaptation for transfer learning, In: 2017 IEEE International Conference on Data Mining, New Orleans, LA, USA. IEEE, 1129-1134. [14] B.C. Sun, K. Saenko, Deep CORAL: Correlation alignment for deep domain adaptation. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016: 443-450. [15] Y. Ganin et al., “Domain-Adversarial Training of Neural Networks,” vol. 17 Cham: Springer International Publishing, 2017, pp. 189-209. [16] C.H. Yu, J.D. Wang, Y.Q. Chen, M.Y. Huang, Transfer learning with dynamic adversarial adaptation network, In: 2019 IEEE International Conference on Data Mining. Beijing, China. IEEE, 778-786. [17] W.P. Wang, Z.R. Wang, Z.F. Zhou, H.X. Deng, W.L. Zhao, C.Y. Wang, Y.Z. Guo, Anomaly detection of industrial control systems based on transfer learning, Tsinghua Sci. Technol. 26 (2021) (6)821-832. [18] W. Weiping, W. Zhaorong, Z. Zhanfan, D. Haixia, Z. Weiliang, W. Chunyang, G. Yongzhen, Anomaly detection of industrial control systems based on transfer learning, Tsinghua Science and Technology, (6) (2021) 821-832. [19] L. Guo, Y.G. Lei, S.B. Xing, T. Yan, N.P. Li, Deep convolutional transfer learning network: A new method for intelligent fault diagnosis of machines with unlabeled data, IEEE Trans. Ind. Electron. 66 (9) (2019) 7316-7325. [20] W. Zhang,,, Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis, Reliab. Eng. Syst. Saf. 229 (2023) 108885. [21] W.W. Qian, A novel transfer learning method for robust fault diagnosis of rotating machines under variable working conditions, Measurement 138 (2019) 514-525. [22] D.L. Gao,,, Deep weighted joint distribution adaption network for fault diagnosis of blast furnace ironmaking process, Comput. Chem. Eng. 162 (2022) 107797. [23] W. Zhang, X. Li, H. Ma, Z. Luo, X. Li, Universal domain adaptation in fault diagnostics with hybrid weighted deep adversarial learning, IEEE Trans. Ind. Inform. 17 (12) (2021) 7957-7967. [24] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, J.W. Vaughan, A theory of learning from different domains, Mach. Learn. 79 (1-2) (2010) 151-175. [25] K. Saito, D. Kim, S. Sclaroff, T. Darrell, K. Saenko, Semi-supervised domain adaptation via minimax entropy, 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South), IEEE, pp. 8049 - 8057. [26] T. Jafar, M. van Someren, H. Afsarmanesh, Ensemble based co-training, In: 23rd Benelux Conference on Artificial Intelligence, 223-231 (2011). [27] L. van der Maaten, Accelerating t-SNE using Tree-Based Algorithms, Journal of machine learning research, 15(2014) 3221-3245. |