[1] J. Gracida, J. Ortega-Ortega, L.G. Torres B, M. Romero-Avila, A. Abreu, Synthesis of anionic surfactant and their application in washing of oil-contaminated soil, J. Surfactants Deterg. 20 (2) (2017) 493-502.https://doi.org/10.1007/s11743-017-1926-z [2] Y. Gu, Z. Zuo, C. Shi, X. Hu, Applied Sciences-Basel, 10 (2020) 1103. [3] T.K. Li, Y. Liu, S.J. Lin, Y.Z. Liu, Y.F. Xie, Soil pollution management in China: a brief introduction, Sustainability 11 (3) (2019) 556.https://doi.org/10.3390/su11030556 [4] K. Urum, S. Grigson, T. Pekdemir, S. McMenamy, A comparison of the efficiency of different surfactants for removal of crude oil from contaminated soils, Chemosphere 62 (9) (2006) 1403-1410.https://doi.org/10.1016/j.chemosphere.2005.05.016 [5] R. Khalladi, O. Benhabiles, F. Bentahar, N. Moulai-Mostefa, Surfactant remediation of diesel fuel polluted soil, J. Hazard. Mater. 164 (2-3) (2009) 1179-1184.https://doi.org/10.1016/j.jhazmat.2008.09.024 [6] A. Uhmann, T.J. Aspray, Potential benefit of surfactants in a hydrocarbon contaminated soil washing process: Fluorescence spectroscopy based assessment, J. Hazard. Mater. 219-220 (2012) 141-147.https://doi.org/10.1016/j.jhazmat.2012.03.071 [7] W.X. Chen, H.Y. Zhang, M. Zhang, X.F. Shen, X.Y. Zhang, F. Wu, J. Hu, B. Wang, X.L. Wang, Removal of PAHs at high concentrations in a soil washing solution containing TX-100 via simultaneous sorption and biodegradation processes by immobilized degrading bacteria in PVA-SA hydrogel beads, J. Hazard. Mater. 410 (2021) 124533.https://doi.org/10.1016/j.jhazmat.2020.124533 [8] L. Wang, H.E. Liu, S. Chen, M. Wang, Y.T. Liu, W.H. Yu, X.X. Zhang, Crude oil-contaminated soil treatment and oil recovery through micro-emulsion washing, Energy Fuels 33 (11) (2019) 11486-11493.https://doi.org/10.1021/acs.energyfuels.9b02753 [9] C. Toncumpou, E.J. Acosta, L.B. Quencer, A.F. Joseph, J.F. Scamehorn, D.A. Sabatini, S. Chavadej, N. Yanumet, Microemulsion formation and detergency with oily soils: I. Phase behavior and interfacial tension,Journal of Surfactants and Detergents, 6 (2003) 191-203. [10] C. Tongcumpou,E. J. Acosta,L. B. Quencer,A. F. Joseph,J. F. Scamehorn,D. A. Sabatini,S. Chavadej,N. Yanumet, Microemulsion formation and detergency with oily soils: II. Detergency formulation and performance,Journal of Surfactants and Detergents, 6 (2003) 205-214. [11] C. Tongcumpou, E.J. Acosta, L.B. Quencer, A.F. Joseph, J.F. Scamehorn, D.A. Sabatini, N. Yanumet, S. Chavadej, Journal of Surfactants and Detergents, 8 (2005) 147-156. [12] Y. Gu, S. Chen, H.e. Liu, J. Li, Y. Liu, L. Wang, Chinese Journal of Chemical Engineering, 28 (2020) 526-531. [13] S. Dela Fonte, C. Silva, L.C. Santos, G. Simonelli, Remediation of oil-contaminated sediments using microemulsions: a review, Soil Sediment Contam. Int. J. 30 (7) (2021) 771-786.https://doi.org/10.1080/15320383.2021.1893644 [14] J.-L. Salager, A.M. Forgiarini, J. Bullon, Journal of Surfactants and Detergents, 16 (2013) 449-472. [15] E.O. Fenibo, G.N. Ijoma, R. Selvarajan, C.B. Chikere, Microbial surfactants: the next generation multifunctional biomolecules for applications in the petroleum industry and its associated environmental remediation, Microorganisms 7 (11) (2019) 581.https://doi.org/10.3390/microorganisms7110581 [16] I.G.S. da Silva, F.C.G. de Almeida, N.M.P. da Rocha e Silva, J.T.R. de Oliveira, A. Converti, L.A. Sarubbo, Application of green surfactants in the remediation of soils contaminated by hydrocarbons, Processes 9 (9) (2021) 1666.https://doi.org/10.3390/pr9091666 [17] Y. Hirata, M. Ryu, Y. Oda, K. Igarashi, A. Nagatsuka, T. Furuta, M. Sugiura, Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants, J. Biosci. Bioeng. 108 (2) (2009) 142-146.https://doi.org/10.1016/j.jbiosc.2009.03.012 [18] R.K. Srivastava, N. Bothra, R. Singh, M.C. Sai, S.V. Nedungadi, P.K. Sarangi, Archives of Microbiology, 204 (2022) 452. [19] S. Mishra, Z.Q. Lin, S.M. Pang, Y.M. Zhang, P. Bhatt, S.H. Chen, Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils, J. Hazard. Mater. 418 (2021) 126253.https://doi.org/10.1016/j.jhazmat.2021.126253 [20] M.A.P.C. Celligoi, V.A.I. Silveira, A. Hipólito, T.O. Caretta, C. Baldo, Sophorolipids: a review on production and perspectives of application in agriculture, Span. J. Agric. Res. 18 (3) (2020) e03R01.https://doi.org/10.5424/sjar/2020183-15225 [21] T. Minucelli, R.M. Ribeiro-Viana, D. Borsato, G. Andrade, M.V. Torres Cely, M.R. de Oliveira, C. Baldo, M.A. Pedrine Colabone Celligoi, Sophorolipids production by candida bombicola ATCC 22214 and its potential application in soil bioremediation, Waste Biomass Valorization 8 (2017) 743-753. [22] T. Goswami, F.M.G. Tack, L. McGachy, M. Sir, Applied Sciences-Basel, 10 (2020) 1981. [23] S.W. Kang, Y.B. Kim, J.D. Shin, E.K. Kim, Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid, Appl. Biochem. Biotechnol. 160 (3) (2010) 780-790.https://doi.org/10.1007/s12010-009-8580-5 [24] G.F. Li, X.Y. Yi, J.T. Jiang, Y. Zhang, Y.L. Li, Dynamic surface properties and dilational rheology of acidic and lactonic sophorolipids at the air-water interface, Colloids Surf. B Biointerfaces 195 (2020) 111248.https://doi.org/10.1016/j.colsurfb.2020.111248 [25] C.H. Yang, Experimental study on the viscosity reduction of heavy oil by using of a new type of micro-emulsion, Petroleum Sci. Technol. 37 (12) (2019) 1394-1399.https://doi.org/10.1080/10916466.2019.1587459 [26] E. Lowry, M. Sedghi, L. Goual, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 506 (2016) 485-494. [27] T. R. Carale, Q. T. Pham, D. Blankschtein, Langmuir, 10 (1994) 109-121. [28] J. Long, S.L. Tian, G. Li, L. Li, Micellar aggregation behavior and electrochemically reversible solubilization of a redox-active nonionic surfactant, J. Solut. Chem. 44 (6) (2015) 1163-1176.https://doi.org/10.1007/s10953-015-0345-x [29] S. Miyagishi, K. Okada, T. Asakawa, Salt effect on critical micelle concentrations of nonionic surfactants, N-acyl-N-methylglucamides (MEGA-n), J. Colloid Interface Sci. 238 (1) (2001) 91-95.https://doi.org/10.1006/jcis.2001.7503 [30] H.N. Chen, L.Y. Tao, J.M. Shi, X.R. Han, X.G. Cheng, Exogenous salicylic acid signal reveals an osmotic regulatory role in priming the seed germination of Leymus chinensis under salt-alkali stress, Environ. Exp. Bot. 188 (2021) 104498.https://doi.org/10.1016/j.envexpbot.2021.104498 [31] J. Lin, X. Hua, X. Peng, B. Dong, X. Yan, Frontiers in Plant Science, 9 (2018) 1458. [32] Y. Wei, Y.Q. Wang, M. Duan, J.C. Han, G. Li, Growth tolerance and remediation potential of six plants in oil-polluted soil, J. Soils Sediments 19 (11) (2019) 3773-3785. https://doi.org/10.1007/s11368-019-02348-w |