[1] F. Pio, Present status and perspectives in de-NOx SCR catalysis, Appl. Catal. A Gen. 222 (1-2) (2001) 221-236. [2] Xuyang, Bai, Sustainable recycling of titanium from TiO2 in spent SCR denitration catalyst via molten salt electrolysis, J. Energy Chem. 58 (2021) 557-563. [3] V.I. Pârvulescu, P. Grange, B.Delmon, Catalytic removal of NO, Catal. Today 46 (4) (1998) 233-316. [4] J. Woon, Kim, Recovery of tungsten from spent selective catalytic reduction catalysts by pressure leaching, J. Ind. Eng. Chem. 28 (2015) 73-77. [5] F. Ferella, A review on management and recycling of spent selective catalytic reduction catalysts, J. Clean. Prod. 246 (2020) 118990. [6] M.D. Argyle, C.H. Bartholomew, Heterogeneous catalyst deactivation and regeneration: A review, Catalysts 5 (1) (2015) 145-269. [7] Gyeonghye, Moon, Leaching of spent selective catalytic reduction catalyst using alkaline melting for recovery of titanium, tungsten, and vanadium, Hydrometallurgy 189 (2019) 105132. [8] Qijun, Zhang, Recycling strategies of spent V2O5-WO3/TiO2 catalyst: A review, Resour. Conserv. Recycl. 161 (2020) 104983. [9] Yijun, Cao, A clean and efficient approach for recovery of vanadium and tungsten from spent SCR catalyst, Miner. Eng. 165 (2021) 106857. [10] Z.J. Dai, L.L. Wang, H. Tang, Z.J. Sun, W. Liu, Y. Sun, S. Su, S. Hu, Y. Wang, K. Xu, L. Liu, P. Ling, J. Xiang, Speciation analysis and leaching behaviors of selected trace elements in spent SCR catalyst, Chemosphere 207 (2018) 440-448. [11] Wenfen, Wu, Selective reduction leaching of vanadium and iron by oxalic acid from spent V2O5-WO3/TiO2 catalyst, Hydrometallurgy 179 (2018) 52-59. [12] N.N. Liu, X.Y. Xu, Y. Liu, Recovery of vanadium and tungsten from spent selective catalytic reduction catalyst by alkaline pressure leaching, Physicochem. Probl. Miner. Process. 56 (2020) 405-418. [13] Wenfen, Wu, Removal of V and Fe from spent denitrification catalyst by using oxalic acid: Study of dissolution kinetics and toxicity, Green Energy Environ. 6 (5) (2021) 660-669. [14] B. Wang, Z. Liu, D. Lin, Z. Cao, F. He, G. Lu, Y. Xiao, A Review on Recovery and Utilization of Spent V2O5-WO3/TiO2 Catalyst, Mater. Rev. 35 8A (2021) 15001-15010. (in Chinese). [15] Q.J. Zhang, Y.F. Wu, T.Y. Zuo, Titanium extraction from spent selective catalytic reduction catalysts in a NaOH molten-salt system: Thermodynamic, experimental, and kinetic studies, Metall Mater Trans B 50 (1) (2019) 471-479. [16] C. Hua, L. Zhu, J. Yao, K. Zhuang, Research on the Quality and Characteristics of Carriers for Resource Reuse of Waste Flue Gas Denitration Catalyst, Electr. Pow. 54 (2) (2021) 197-204. (in Chinese). [17] Y. Yu, J. Wang, J. Chen, X. He, Y. Wang, K. Song, Z. Xie, J. Environ. Sci. (Beijing, China) 47 (2016) 100-108. [18] Q. Lu, X.Q. Pei, Y.W. Wu, M.X. Xu, D.J. Liu, L.Zhao, Deactivation mechanism of the commercial V2O5-MoO3/TiO2 selective catalytic reduction catalyst by arsenic poisoning in coal-fired power plants, Energy Fuels 34 (4) (2020) 4865-4873. [19] Yue, Peng, Deactivation and regeneration of a commercial SCR catalyst: Comparison with alkali metals and arsenic, Appl. Catal. B Environ. 168-169 (2015) 195-202. [20] Xiaoxiang, Wang, Regeneration of alkali poisoned TiO2-based catalyst by various acids in NO selective catalytic reduction with NH3, Fuel 285 (2021) 119069. [21] M. Kapkowski, T. Siudyga, R. Sitko, A. Niemczyk-Wojdyla, T. Zelenka, G. Zelenková, J. Polanski, Toward a viable ecological method for regenerating a commercial SCR catalyst-Selectively leaching surface deposits and reconstructing a pore landscape, J. Clean. Prod. 316 (2021) 128291. [22] Yanke, Yu, Regeneration of commercial selective catalyst reduction catalysts deactivated by Pb and other inorganic elements, J. Environ. Sci. 47 (2016) 100-108. [23] Yudong, Xue, Electrochemical detoxification and recovery of spent SCR catalyst by in situ generated reactive oxygen species in alkaline media, Chem. Eng. J. 325 (2017) 544-553. [24] Y. Du, T. Xu, M. Gu, Comparison of domestic and imported TiO2 support raw-materials for the production of de-NOx SCR catalysts, Environ. Chem. 31 (8) (2012) 1251-1255. (in Chinese). [25] A. Marberger, M. Elsener, D. Ferri, O.Kröcher, VOx surface coverage optimization of V2O5/WO3-TiO2 SCR catalysts by variation of the V loading and by aging, Catalysts 5 (4) (2015) 1704-1720. [26] Meng, Li, A promising approach to recover a spent SCR catalyst: Deactivation by arsenic and alkaline metals and catalyst regeneration, Chem. Eng. J. 342 (2018) 1-8. [27] C.P. Qi, W.J. Bao, L.G. Wang, H.Q. Li, W.F.Wu, Study of the V2O5-WO3/TiO2 catalyst synthesized from waste catalyst on selective catalytic reduction of NOx by NH3, Catalysts 7 (12) (2017) 110. [28] N.M. dos Santos, J.M. Rocha, J.M.E. Matos, O.P. Ferreira, J.M. Filho, B.C. Viana, A.C.Oliveira, Metal cations intercalated titanate nanotubes as catalysts for α, β unsaturated esters production, Appl. Catal. A Gen. 454 (2013) 74-80. [29] J.J. Yang, Z.S. Jin, X.D. Wang, W. Li, J.W. Zhang, S.L. Zhang, X.Y. Guo, Z.J. Zhang, Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2, Dalton Trans. (20) (2003) 3898-3901. [30] J. Reyes-Miranda, A. Garcia-Murillo, A. Garrido-Hernández, F.de J Carrillo-Romo, Fast and mild alkaline solvothermal synthesis of nanostructured flower-like Na2Ti3O7 and its methylene blue adsorption capacity, Mater. Lett. 292 (2021) 129589. [31] D.V. Bavykin, M. Carravetta, A.N. Kulak, F.C.Walsh, Application of magic-angle spinning NMR to examine the nature of protons in titanate nanotubes, Chem. Mater. 22 (8) (2010) 2458-2465. [32] A. Kukovecz, M. Hodos, E. Horváth, G. Radnóczi, Z. Kónya, I. Kiricsi, Oriented crystal growth model explains the formation of titania nanotubes, J. Phys. Chem. B 109 (38) (2005) 17781-17783. [33] N. Ameur, R.Bachir, Study of 1D titanate-based materials-new modification of the synthesis procedure and surface properties-recent applications, ChemistrySelect 5 (3) (2020) 1164-1185. [34] Y. Du, J. Gao, X. Lan, Z. Guo, Replacement behavior of Ti and Mg and selective separation of MgxTi3-xO5 (x=1, 0.9, 0.75, 0.6) from Ti-bearing electric furnace smelting slag via super-gravity, Ceram. Int. 48 (6) (2022) 7918-7925. [35] D. Bavykin, J. Friedrich, F. Walsh, Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications, Adv. Mater. 18 (21) (2006) 2807-2824. [36] A. Nakahira, T. Kubo, C. Numako, Formation mechanism of TiO2-derived titanate nanotubes prepared by the hydrothermal process, Inorg. Chem. 49 (13) (2010) 5845-5852. [37] J. Ni, S. Fu, C. Wu, Y. Zhao, J. Maier, Y. Yu, L. Li, Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering, Adv. Energy Mater. 6 (11) (2016) 1502568. [38] Nan, Liu, A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications, Catal. Today 225 (2014) 34-51. [39] W. N. Schreiner, A standard test method for the determination of RIR values by X-ray diffraction, Powder Diffr. 10 (1) (1995) 25-33. [40] Y.D. Xue, Y.T. Wang, Effective industrial regeneration of arsenic poisoning waste selective catalytic reduction catalyst: Contaminants removal and activity recovery, Environ Sci Pollut Res 25 (34) (2018) 34114-34122. [41] Xuesong, Shang, Regeneration of full-scale commercial honeycomb monolith catalyst (V2O5-WO3/TiO2) used in coal-fired power plant, J. Ind. Eng. Chem. 18 (1) (2012) 513-519. [42] Chizhong, Wang, Dispersion of tungsten oxide on SCR performance of V2O5WO3/TiO2: Acidity, surface species and catalytic activity, Chem. Eng. J. 225 (2013) 520-527. |