[1] E.A. Abdel-Galil, A.S. Tourky, A.E. Kasem, Sorption of some radionuclides from nuclear waste effluents by polyaniline/SiO2 composite: Characterization, thermal stability, and gamma irradiation studies, Appl. Radiat. Isot. 156 (2020) 109009. [2] S. Yang, C. Han, X. Wang, M. Nagatsu, Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites, J. Hazard. Mater. 274 (2014) 46–52. [3] H.G. Mobtaker, T. Yousefi, S.M.Pakzad, Cesium removal from nuclear waste using a magnetical CuHCNPAN nano composite, J. Nucl. Mater. 482 (2016) 306–312. [4] Z. Tian, T.S. Chee, L. Zhu, T. Duan, X. Zhang, L. Lei, C. Xiao, Comprehensive comparison of bismuth and silver functionalized nickel foam composites in capturing radioactive gaseous iodine, J. Hazard. Mater. 417 (2021) 125978. [5] M. Yadollahi, H. Hamadi, V. Nobakht, Capture of iodine in solution and vapor phases by newly synthesized and characterized encapsulated Cu2O nanoparticles into the TMU-17-NH2 MOF, J. Hazard. Mater. 399 (2020) 122872. [6] P. Liu, T. Chen, J.G. Zheng, Removal of iodate from aqueous solution using diatomite/nano titanium dioxide composite as adsorbent, J. Radioanal. Nucl. Chem. 324 (3) (2020) 1179–1188. [7] X. Zhang, P. Gu, S. Zhou, X. Li, G. Zhang, L. Dong, Enhanced removal of iodide ions by nano Cu2O/Cu modified activated carbon from simulated wastewater with improved countercurrent two-stage adsorption, Sci. Total Environ. 626 (2018) 612–620. [8] J. Zhou, S. Hao, L. Gao, Y. Zhang, Study on adsorption performance of coal based activated carbon to radioactive iodine and stable iodine, Ann. Nucl. Energy 72 (2014) 237–241. [9] Z. Ma, Y. Han, J. Qi, Z. Qu, X. Wang, High iodine adsorption by lignin-based hierarchically porous flower-like carbon nanosheets, Ind. Crops Prod. 169 (2021) 113649. [10] J. Panda, J.K. Sahoo, P.K. Panda, S.N. Sahu, M. Samal, S.K. Pattanayak, R.Sahu, Adsorptive behavior of zeolitic imidazolate framework-8 towards anionic dye in aqueous media: Combined experimental and molecular docking study, J. Mol. Liq. 278 (2019) 536–545. [11] J.J. Liu, J.J. Fu, G.J. Li, T. Liu, S.B. Xia, F.X. Cheng, A water-stable photochromic MOF with controllable iodine sorption and efficient removal of dichromate, CrystEngComm 23 (43) (2021) 7628–7634. [12] G. Mehlana, G. Ramon, S.A. Bourne, A 4-fold interpenetrated diamondoid metal–organic framework with large channels exhibiting solvent sorption properties and high iodine capture, Microporous Mesoporous Mater. 231 (2016) 21–30. [13] A. Bieniek, A.P. Terzyk, M. Wiśniewski, K. Roszek, P. Kowalczyk, L. Sarkisov, S. Keskin, K. Kaneko, MOF materials as therapeutic agents, drug carriers, imaging agents and biosensors in cancer biomedicine: Recent advances and perspectives, Prog. Mater. Sci. 117 (2021) 100743. [14] Y. Shi, S. Wu, Z. Wang, X. Bi, M. Huang, Y. Zhang, J. Jin, Mixed matrix membranes with highly dispersed MOF nanoparticles for improved gas separation, Sep. Purif. Technol. 277 (2021) 119449. [15] S. Govindaraju, S.K. Arumugasamy, G. Chellasamy, K. Yun, Zn-MOF decorated bio activated carbon for photocatalytic degradation, oxygen evolution and reduction catalysis, J. Hazard. Mater. 421 (2022) 126720. [16] J. Panda, S.N. Sahu, J.K. Sahoo, S.P. Biswal, S.K. Pattanayak, R. Samantaray, R. Sahu, Efficient removal of two anionic dyes by a highly robust zirconium based metal organic framework from aqueous medium: Experimental findings with molecular docking study, Environ. Nanotechnol. Monit. Manag. 14 (2020) 100340. [17] Y.Z. Tang, H.L. Huang, J. Li, W.J. Xue, C.L. Zhong, IL-induced formation of dynamic complex iodide anions in IL@MOF composites for efficient iodine capture, J. Mater. Chem. A 7 (31) (2019) 18324–18329. [18] M. Elshahat, A. Abdelhamid, R. Abdelhameed, Capture of iodide from wastewater by effective adsorptive membrane synthesized from MIL-125-NH2 and cross-linked chitosan, Carbohydr. Polym. 231 (2020) 115742. [19] A. Gogia, P. Das, S.K. Mandal, Tunable strategies involving flexibility and angularity of dual linkers for a 3D metal–organic framework capable of multimedia iodine capture, ACS Appl. Mater. Interfaces 12 (41) (2020) 46107–46118. [20] M.R. Azhar, Y. Arafat, M. Khiadani, S.B. Wang, Z.P. Shao, Water-stable MOFs-based core–shell nanostructures for advanced oxidation towards environmental remediation, Compos. B Eng. 192 (2020) 107985. [21] S. Dhaka, R. Kumar, A. Deep, M.B. Kurade, S.W. Ji, B.H. Jeon, Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments, Coord. Chem. Rev. 380 (2019) 330–352. [22] X.J. Ma, Y.T. Chai, P. Li, B. Wang, Metal–organic framework films and their potential applications in environmental pollution control, Acc. Chem. Res. 52 (5) (2019) 1461–1470. [23] B. Arabsorkhi, H. Sereshti, A. Abbasi, Electrospun metal–organic framework/polyacrylonitrile composite nanofibrous mat as a microsorbent for the extraction of tetracycline residue in human blood plasma, J. Sep. Sci. 42 (8) (2019) 1500–1508. [24] P. Bansal, R. Purwar, Polyacrylonitrile/clay nanofibrous nanocomposites for efficient adsorption of Cr (VI) ions, J. Polym. Res. 28 (1) (2021) 7. [25] D.W. Sun, Y.F. Li, B. Zhang, X.B. Pan, Preparation and characterization of novel nanocomposites based on polyacrylonitrile/kaolinite, Compos. Sci. Technol. 70 (6) (2010) 981–988. [26] P.L. Hariani, M. Faizal, R. Ridwan, M. Marsi, D. Setiabudidaya, Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye, Int. J. Environ. Sci. Dev. (2013) 336–340. [27] N.M. Mahmoodi, M. Oveisi, A. Taghizadeh, M. Taghizadeh, Synthesis of pearl necklace-like ZIF-8@chitosan/PVA nanofiber with synergistic effect for recycling aqueous dye removal, Carbohydr. Polym. 227 (2020) 115364. [28] Y. Li, K. Zhou, M. He, J.F. Yao, Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption, Microporous Mesoporous Mater. 234 (2016) 287–292. [29] L. Li, R. Chen, Y.R. Li, T.T. Xiong, Y.Q. Li, Novel cotton fiber-covalent organic framework hybrid monolith for reversible capture of iodine, Cellulose 27 (10) (2020) 5879–5892. [30] A. Gamarra-Montes, B. Missagia, J. Morató, S. Muñoz-Guerra, Antibacterial films made of ionic complexes of poly(γ-glutamic acid) and ethyl lauroyl arginate, Polymers 10 (1) (2017) 21. [31] M. Tüfekci, S.G. Durak, İ. Pir, T.O. Acar, G.T. Demirkol, N. Tüfekci, Manufacturing, characterisation and mechanical analysis of polyacrylonitrile membranes, Polymers 12 (10) (2020) 2378. [32] D. Chauhan, S. Afreen, S. Mishra, N. Sankararamakrishnan, Synthesis, characterization and application of zinc augmented aminated PAN nanofibers towards decontamination of chemical and biological contaminants, J. Ind. Eng. Chem. 55 (2017) 50–64. [33] A. Ulu, Metal–organic frameworks (MOFs): A novel support platform for ASNase immobilization, J. Mater. Sci. 55 (14) (2020) 6130–6144. [34] M. Adnan, K. Li, L. Xu, Y.J. Yan, X-shaped ZIF-8 for immobilization rhizomucor Miehei lipase via encapsulation and its application toward biodiesel production, Catalysts 8 (3) (2018) 96. [35] L. Nalbandian, E. Patrikiadou, V. Zaspalis, A. Patrikidou, E. Hatzidaki, C.N. Papandreou, Magnetic nanoparticles in medical diagnostic applications: Synthesis, characterization and proteins conjugation, Curr. Nanosci. 12 (4) (2016) 455–468. [36] Y. Wei, B. Han, X.Y. Hu, Y.H. Lin, X.Z. Wang, X.L. Deng, Synthesis of Fe3O4 nanoparticles and their magnetic properties, Procedia Eng. 27 (2012) 632–637. [37] J. Bag, S. Mukherjee, S.K. Ghosh, A. Das, A. Mukherjee, J.K. Sahoo, K.S. Tung, H. Sahoo, M. Mishra, Fe3O4 coated guargum nanoparticles as non-genotoxic materials for biological application, Int. J. Biol. Macromol. 165 (Pt A) (2020) 333–345. [38] P.S. Saud, Z.K. Ghouri, B. Pant, T. An, J.H. Lee, M. Park, H.Y. Kim, Photocatalytic degradation and antibacterial investigation of nano synthesized Ag3VO4 particles @PAN nanofibers, Carbon Lett. 18 (2016) 30–36. [39] T.O. Siyanbola, T. Gurunathan, A.F. Akinsola, J.A. Adekoya, A.A. Akinsiku, O. Aladesuyi, S. Rajiv, S. Mohanty, T.S. Natarajan, S.K. Nayak, Antibacterial and morphological studies of electrospun silver-impregnated polyacrylonitrile nanofibre, Orient. J. Chem. 32 (1) (2016) 159–164. [40] N.A.H. Md Nordin, A.F. Ismail, N. Yahya, Zeolitic imidazole framework 8 decorated graphene oxide (ZIF-8/GO) mixed matrix membrane (MMM) for CO2/CH4 separation, J. Teknol. 79 (1–2) (2017), https://doi.org/10.11113/jt.v79.10438. [41] J.W. Wang, N.X. Li, Z.R. Li, J.R. Wang, X. Xu, C.S. Chen, Preparation and gas separation properties of Zeolitic imidazolate frameworks-8 (ZIF-8) membranes supported on silicon nitride ceramic hollow fibers, Ceram. Int. 42 (7) (2016) 8949–8954. [42] X.B. Yang, J. Chen, H.X. Lai, J.P. Hu, M. Fang, X.T. Luo, MOF-derived Co/ZnO@silicalite-1 photocatalyst with high photocatalytic activity, RSC Adv. 7 (61) (2017) 38519–38525. [43] K.S. Loh, Y.H. Lee, A. Musa, A.A. Salmah, I. Zamri, Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2,4-dichlorophenoxyacetic acid, Sensors 8 (9) (2008) 5775–5791. [44] B. Valizadeh, T.N. Nguyen, B. Smit, K.C. Stylianou, Porous metal–organic framework@polymer beads for iodine capture and recovery using a gas-sparged column, Adv. Funct. Mater. 28 (30) (2018) 1801596. [45] Q. Zhao, L. Zhu, G.H. Lin, G.Y. Chen, B. Liu, L. Zhang, T. Duan, J.H. Lei, Controllable synthesis of porous Cu-BTC@polymer composite beads for iodine capture, ACS Appl. Mater. Interfaces 11 (45) (2019) 42635–42645. [46] D.F. Sava, M.A. Rodriguez, K.W. Chapman, P.J. Chupas, J.A. Greathouse, P.S. Crozier, T.M. Nenoff, Capture of volatile iodine, a gaseous fission product, by zeolitic imidazolate framework-8, J. Am. Chem. Soc. 133 (32) (2011) 12398–12401. [47] X. Qian, B. Wang, Z.Q. Zhu, H.X. Sun, F. Ren, P. Mu, C.H. Ma, W.D. Liang, A. Li, Novel N-rich porous organic polymers with extremely high uptake for capture and reversible storage of volatile iodine, J. Hazard. Mater. 338 (2017) 224–232. [48] Y. Wang, G.A. Sotzing, R. Weiss, Sorption of iodine by polyurethane and melamine-formaldehyde foams using iodine sublimation and iodine solutions, Polymer 47 (8) (2006) 2728–2740. [49] Z.J. Yan, Y. Yuan, Y.Y. Tian, D.M. Zhang, G.S. Zhu, Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites, Angew. Chem. Int. Ed. 54 (2015) 12733–12737. [50] S.U. Nandanwar, K. Coldsnow, M. Green, V. Utgikar, P. Sabharwall, D.E. Aston, Activity of nanostructured C@ETS-10 sorbent for capture of volatile radioactive iodine from gas stream, Chem. Eng. J. 287 (2016) 593–601. [51] B.J. Riley, D.A. Pierce, J. Chun, J. Matyáš, W.C. Lepry, T.G. Garn, J.D. Law, M.G. Kanatzidis, Polyacrylonitrile-chalcogel hybrid sorbents for radioiodine capture, Environ. Sci. Technol. 48 (10) (2014) 5832–5839. [52] E.M. Mahdi, A.K. Chaudhuri, J.C. Tan, Capture and immobilisation of iodine (I2) utilising polymer-based ZIF-8 nanocomposite membranes, Mol. Syst. Des. Eng. 1 (1) (2016) 122–131. [53] T. Madrakian, A. Afkhami, M. Ali Zolfigol, M. Ahmadi, N. Koukabi, Application of modified silica coated magnetite nanoparticles for removal of iodine from water samples, Nano-Micro Lett. 4 (1) (2012) 57–63. [54] L.Y. Wang, P. Chen, X.T. Dong, W. Zhang, S. Zhao, S.T. Xiao, Y.G. Ouyang, Porous MOF-808@PVDF beads for removal of iodine from gas streams, RSC Adv. 10 (73) (2020) 44679–44687. [55] Q. Yu, X.H. Jiang, Z.J. Cheng, Y.W. Liao, Q. Pu, M. Duan, Millimeter-sized Bi2S3@polyacrylonitrile hybrid beads for highly efficient iodine capture, New J. Chem. 44 (39) (2020) 16759–16768. [56] M. El-Shahat, A.E. Abdelhamid, R.M. Abdelhameed, Capture of iodide from wastewater by effective adsorptive membrane synthesized from MIL-125-NH2 and cross-linked chitosan, Carbohydr. Polym. 231 (2020) 115742. [57] P. Chen, X.H. He, M.B. Pang, X.T. Dong, S. Zhao, W. Zhang, Iodine capture using Zr-based metal–organic frameworks (Zr-MOFs): Adsorption performance and mechanism, ACS Appl. Mater. Interfaces 12 (18) (2020) 20429–20439. [58] F. Ren, Z.Q. Zhu, X. Qian, W.D. Liang, P. Mu, H.X. Sun, J.H. Liu, A. Li, Novel thiophene-bearing conjugated microporous polymer honeycomb-like porous spheres with ultrahigh iodine uptake, Chem. Commun. 52 (63) (2016) 9797–9800. [59] G. Lin, L. Zhu, T. Duan, L. Zhang, B. Liu, J. Lei, Efficient capture of iodine by a polysulfide-inserted inorganic NiTi-layered double hydroxides, Chem. Eng. J. 378 (2019) 122181. [60] Z. Wang, Y. He, L. Zhu, L. Zhang, B. Liu, Y.K. Zhang, T. Duan, Natural porous wood decorated with ZIF-8 for high efficient iodine capture, Mater. Chem. Phys. 258 (2021) 123964. [61] F. Yu, Y.T. Chen, Y.S. Wang, C. Liu, J.X. Qin, Synthesis of metal–organic framework nanocrystals immobilized with 3D flowerlike Cu–Bi-layered double hydroxides for iodine efficient removal, J. Mater. Res.35 (3) (2020) 299–311. [62] X. Zhang, P.Y. Zhang, Z. Wu, L. Zhang, G.M. Zeng, C.J. Zhou, Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles, Colloids Surf. A Physicochem. Eng. Aspects 435 (2013) 85–90. [63] W. Zhang, Q. Li, Q. Mao, G. He, Cross-linked chitosan microspheres: An efficient and eco-friendly adsorbent for iodide removal from waste water, Carbohydr. Polym. 209 (2019) 215–222. [64] A.C. Tella, J.T. Bamgbose, V.O. Adimula, M. Omotoso, S.E. Elaigwu, V.T. Olayemi, O.A. Odunola, Synthesis of metal–organic frameworks (MOFs) MIL-100(Fe) functionalized with thioglycolic acid and ethylenediamine for removal of eosin B dye from aqueous solution, SN Appl. Sci. 3 (1) (2021) 136. [65] Y.H. Wu, Y.B. Xie, F.Y. Zhong, J.K. Gao, J.M.Yao, Fabrication of bimetallic Hofmann-type metal–organic frameworks@cellulose aerogels for efficient iodine capture, Microporous Mesoporous Mater. 306 (2020) 110386. [66] M. Li, G.Y. Yuan, Y. Zeng, Y.Y. Yang, J.L. Liao, J.J. Yang, N. Liu, Flexible surface-supported MOF membrane via a convenient approach for efficient iodine adsorption, J. Radioanal. Nucl. Chem. 324 (3) (2020) 1167–1177. [67] T.A. Makhetha, S.C. Ray, R.M. Moutloali, Zeolitic imidazolate framework-8-encapsulated nanoparticle of Ag/Cu composites supported on graphene oxide: Synthesis and antibacterial activity, ACS Omega 5 (17) (2020) 9626–9640. [68] J.K. Sahoo, S.K. Paikra, M. Mishra, H. Sahoo, Amine functionalized magnetic iron oxide nanoparticles: Synthesis, antibacterial activity and rapid removal of Congo red dye, J. Mol. Liq. 282 (2019) 428–440. [69] J.K. Sahoo, M. Konar, J. Rath, D. Kumar, H. Sahoo, Magnetic hydroxyapatite nanocomposite: Impact on eriochrome black-T removal and antibacterial activity, J. Mol. Liq. 294 (2019) 111596. [70] J.K. Sahoo, M. Konar, J. Rath, D. Kumar, H.Sahoo, Hexagonal strontium ferrite: Cationic dye adsorption and antibacterial activity, Sep. Sci. Technol. 55 (3) (2020) 415–430. [71] B.J. Smith, A.C. Overholts, N. Hwang, W.R. Dichtel, Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks, Chem. Commun. 52 (18) (2016) 3690–3693. |