[1] X.L. Wang, L.M.Yang, Unveiling the underlying mechanism of nitrogen fixation by a new class of electrocatalysts two-dimensional TM@g-C4N3 monosheets, Appl. Surf. Sci. 576 (2022) 151839. [2] C.C. Dong, F. Wei, J.D. Li, Q. Lu, X.J.Han, Uniform octahedral ZrO2@C from carbonized UiO-66 for electrocatalytic nitrogen reduction, Mater. Today Energy 22 (2021) 100884. [3] G.H. Wang, P. Shen, Y.J. Luo, X.T. Li, X.C. Li, K. Chu, A vacancy engineered MnO2-x electrocatalyst promotes nitrate electroreduction to ammonia, Dalton Trans. 51 (24) (2022) 9206–9212. [4] H. Zhang, B. Song, W.W. Zhang, Y.W. Cheng, Q.W. Chen, K. Lu, Activation of MoS2 monolayer electrocatalysts via reduction and phase control in molten sodium for selective hydrogenation of nitrogen to ammonia, Chem. Sci. 13 (33) (2022) 9498–9506. [5] Y.Q. Liu, L. Huang, Y.X. Fang, X.Y. Zhu, S.J. Dong, Achieving ultrahigh electrocatalytic NH3 yield rate on Fe-doped Bi2WO6 electrocatalyst, Nano Res. 14 (8) (2021) 2711–2716. [6] W. Mohammadi Aframehr, P.H.Pfromm, Activating dinitrogen for chemical looping ammonia Synthesis: Mn nitride layer growth modeling, Chem. Eng. Sci. 252 (2022) 117287. [7] W. Al Maksoud, R.K. Rai, N. Morlanés, M. Harb, R. Ahmad, S. Ould-Chikh, D. Anjum, M.N. Hedhili, B.E. Al-Sabban, K. Albahily, L. Cavallo, J.M.Basset, Active and stable Fe-based catalyst, mechanism, and key role of alkali promoters in ammonia synthesis, J. Catal. 394 (2021) 353–365. [8] K. Chen, Y.J. Luo, P. Shen, X.X. Liu, X.C. Li, X.T. Li, K. Chu, Boosted nitrate electroreduction to ammonia on Fe-doped SnS2 nanosheet arrays rich in S-vacancies, Dalton Trans. 51 (27) (2022) 10343–10350. [9] Mu, J.; Gao, X.-W.; Liu, Z.; Luo, W.-B.; Sun, Z.; Gu, Q.; Li, F., Boosting nitrogen electrocatalytic fixation by three-dimensional TiO2-N nanowire arrays. Journal of Energy Chemistry 2022, 75, 293-300. [10] Shaona, Chen, Boosting nitrogen reduction to ammonia on Fe-N3S sites by introduction S into defect graphene, Mater. Today Energy 25 (2022) 100954. [11] J. Teng, X. Qin, W.Y. Guo, X.L. Song, S.N. Xiao, Y.L. Min, Q.J. Xu, J.C.Fan, Boron nitride quantum dots coupled with cop nanosheet arrays grown on carbon cloth for efficient nitrogen reduction reaction, SSRN Electron. J. (2022) 440,135853. [12] L.H. Ma, F.F. Xu, L.L. Zhang, Z.F. Nie, K. Xia, M.X. Guo, M.Z. Li, X. Ding, Breaking the linear correlations for enhanced electrochemical nitrogen reduction by carbon-encapsulated mixed-valence Fe7(PO4)6, 能源化学(英文版) 31 (2022) (8)182–187, I0006. [13] J.Y. Xu, X.L. Xu, Y. Du, D. Wu, H.M. Ma, X. Ren, Y.Y. Li, Q. Wei, Carbon-doped tin disulfide nanoflowers: A heteroatomic doping strategy for improving the electrocatalytic performance of nitrogen reduction to ammonia, New J. Chem. 46 (35) (2022) 16661–16665. [14] Y.H. Cui, C.N. Sun, Y.B. Qu, T.Y. Dai, H.Y. Zhou, Z.L. Wang, Q. Jiang, The development of catalysts for electrochemical nitrogen reduction toward ammonia: Theoretical and experimental advances, Chem. Commun. 58 (74) (2022) 10290–10302. [15] C.X. Guo, J.R. Ran, A. Vasileff, S.Z. Qiao, Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions, Energy Environ. Sci. 11 (1) (2018) 45–56. [16] Y.J. Luo, Q.Q. Li, Y. Tian, Y.P. Liu, K. Chu, Amorphization engineered VSe2-x nanosheets with abundant Se-vacancies for enhanced N2 electroreduction, J. Mater. Chem. A 10 (4) (2022) 1742–1749. [17] J. Liang, Q. Liu, A. Ali Alshehri, X.P.Sun, Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis, Nano Res. Energy 1 (2022) e9120010. [18] S.L. Foster, S.I.P. Bakovic, R.D. Duda, S. Maheshwari, R.D. Milton, S.D. Minteer, M.J. Janik, J.N. Renner, L.F. Greenlee, Catalysts for nitrogen reduction to ammonia, Nat. Catal. 1 (7) (2018) 490–500. [19] X.Z. Chen, N. Li, Z.Z. Kong, W.J. Ong, X.J. Zhao, Photocatalytic fixation of nitrogen to ammonia: State-of-the-art advancements and future prospects, Mater. Horiz. 5 (1) (2018) 9–27. [20] Yuchi, Wan, Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions, Mater. Today 27 (2019) 69–90. [21] Z.B. Du, J. Liang, S.X. Li, Z.Q. Xu, T.S. Li, Q. Liu, Y.L. Luo, F. Zhang, Y. Liu, Q.Q. Kong, X.F. Shi, B. Tang, A.M. Asiri, B.H. Li, X.P. Sun, Alkylthiol surface engineering: An effective strategy toward enhanced electrocatalytic N2-to-NH3 fixation by a CoP nanoarray, J. Mater. Chem. A 9 (24) (2021) 13861–13866. [22] H.J. Chen, Z.Q. Xu, S.J. Sun, Y.S. Luo, Q. Liu, M.S. Hamdy, Z.S. Feng, X.P. Sun, Y.Wang, Plasma-etched Ti2O3 with oxygen vacancies for enhanced NH3 electrosynthesis and Zn-N2 batteries, Inorg. Chem. Front. 9 (18) (2022) 4608–4613. [23] H.J. Chen, J. Liang, K. Dong, L.C. Yue, T.S. Li, Y.S. Luo, Z.S. Feng, N. Li, M.S. Hamdy, A. Ali Alshehri, Y. Wang, X.P. Sun, Q. Liu, Ambient electrochemical N2-to-NH3 conversion catalyzed by TiO2 decorated juncus effusus-derived carbon microtubes, Inorg. Chem. Front. 9 (7) (2022) 1514–1519. [24] C. Tang, S.Z. Qiao, How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully, Chem. Soc. Rev. 48 (12) (2019) 3166–3180. [25] L. Shi, Y. Yin, H. Wu, R.A.K. Hirani, X.Y. Xu, J.Q. Zhang, N. Rafique, A.H. Asif, S. Zhang, H.Q.Sun, Controllable synthesis of a hollow Cr2O3 electrocatalyst for enhanced nitrogen reduction toward ammonia synthesis, Chin. J. Chem. Eng. 41 (2022) 358–365. [26] Liu, Q.; Xu, T.; Luo, Y.; Kong, Q.; Li, T.; Lu, S.; Alshehri, A. A.; Alzahrani, K. A.; Sun, X., Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Current Opinion in Electrochemistry 2021, 29, 100766. [27] T. Xu, J. Liang, Y.Y. Wang, S.X. Li, Z.B. Du, T.S. Li, Q. Liu, Y.L. Luo, F. Zhang, X.F. Shi, B. Tang, Q.Q. Kong, A.M. Asiri, C. Yang, D.W. Ma, X.P. Sun, Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays, Nano Res. 15 (2) (2022) 1039–1046. [28] W.R. Liao, L. Qi, Y.L. Wang, J.Y. Qin, G.Y. Liu, S.J. Liang, H.Y. He, L.L.Jiang, Interfacial engineering promoting electrosynthesis of ammonia over Mo/phosphotungstic acid with high performance, Adv. Funct. Mater. 31 (22) (2021) 2009151. [29] H. Li, L.Q. Wang, N. Li, J.M. Feng, F. Hou, S.H. Wang, J. Liang. Ion-exchange-induced Bi and K dual-doping of TiOx in molten salts for high-performance electrochemical nitrogen reduction, J. Energy Chem. 69 (2022) 26–34. [30] J. Wang, H. Jang, G.K. Li, M.G. Kim, Z.X. Wu, X.E. Liu, J. Cho, Efficient electrocatalytic conversion of N2 to NH3 on NiWO4 under ambient conditions, Nanoscale 12 (3) (2020) 1478–1483. [31] F.H. Li, Q. Tang, A di-boron pair doped MoS2 (B2@MoS2) single-layer shows superior catalytic performance for electrochemical nitrogen activation and reduction, Nanoscale 11 (40) (2019) 18769–18778. [32] Q. Liu, X.X. Zhang, B. Zhang, Y.L. Luo, G.W. Cui, F.Y. Xie, X.P. Sun, Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod, Nanoscale 10 (30) (2018) 14386–14389. [33] T.S. Li, J.J. Xia, H.H. Xian, Q.R. Chen, K. Xu, Y. Gu, Y.L. Luo, Q. Liu, H.R. Guo, E.Traversa, Fe(III) grafted MoO3 nanorods for effective electrocatalytic fixation of atmospheric N2 to NH3, Int. J. Hydrog. Energy 47 (6) (2022) 3550–3555. [34] Y.Z. Zhang, J. Hu, C.X. Zhang, A.T.F. Cheung, Y. Zhang, L.F. Liu, M.K.H. Leung, Mo2C embedded on nitrogen-doped carbon toward electrocatalytic nitrogen reduction to ammonia under ambient conditions, Int. J. Hydrog. Energy 46 (24) (2021) 13011–13019. [35] Y. Liu, Z.F. Pan, O.C. Esan, X.H. Liu, H.Z. Wang, L. An, Efficient electrocatalytic nitrogen reduction to ammonia with FeNi-Co/carbon mat electrodes, J. Alloys Compd. 927 (2022) 166973. [36] Zemin, Feng, FeS2/MoS2@RGO hybrid materials derived from polyoxomolybdate-based metal-organic frameworks as high-performance electrocatalyst for ammonia synthesis under ambient conditions, Chem. Eng. J. 445 (2022) 136797. [37] J.R. Han, Z.C. Liu, Y.J. Ma, G.W. Cui, F.Y. Xie, F.X. Wang, Y.P. Wu, S.Y. Gao, Y.H. Xu, X.P.Sun, Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst, Nano Energy 52 (2018) 264–270. [38] W.H. Kong, Z.C. Liu, J.R. Han, L. Xia, Y. Wang, Q. Liu, X.F. Shi, Y.P. Wu, Y.H. Xu, X.P. Sun, Ambient electrochemical N2-to-NH3 fixation enabled by Nb2O5 nanowire array, Inorg. Chem. Front. 6 (2) (2019) 423–427. [39] L.S. Huang, J.W. Wu, P. Han, A.M. Al-Enizi, T.M. Almutairi, L.J. Zhang, G.F.Zheng, NbO2 electrocatalyst toward 32% faradaic efficiency for N2 fixation, Small Methods 3 (6) (2019) 1800386. [40] T.X. Wu, M.M. Han, X.G. Zhu, G.Z. Wang, Y.X. Zhang, H.M. Zhang, H.J. Zhao, Experimental and theoretical understanding on electrochemical activation and inactivation processes of Nb3O7(OH) for ambient electrosynthesis of NH3, J. Mater. Chem. A 7 (28) (2019) 16969–16978. [41] J. Wang, G.K. Li, T. Wei, S.Z. Zhou, X.Q. Ji, X.E. Liu, Dopant-site lattice turbulence of Cu-substituted Nb2O5 for efficient nitrogen electroreduction, Nanoscale 13 (5) (2021) 3036–3041. [42] W.H. Kong, R. Zhang, X.X. Zhang, L. Ji, G.S. Yu, T. Wang, Y.L. Luo, X.F. Shi, Y.H. Xu, X.P. Sun, WO3 nanosheets rich in oxygen vacancies for enhanced electrocatalytic N2 reduction to NH3, Nanoscale 11 (41) (2019) 19274–19277. [43] Z.C. Wang, X.K. Wu, J. Liu, D. Zhang, H. Zhao, X.Y. Zhang, Y.N. Qin, N.Z. Nie, D. Wang, J.P. Lai, L. Wang, Ordered vacancies on the body-centered cubic PdCu nanocatalysts, Nano Lett. 21 (22) (2021) 9580–9586. [44] L. Xiao, S.L. Zhu, Y.Q. Liang, Z.Y. Li, S.L. Wu, S.Y. Luo, C.T. Chang, Z.D.Cui, Nanoporous nickel-molybdenum oxide with an oxygen vacancy for electrocatalytic nitrogen fixation under ambient conditions, ACS Appl. Mater. Interfaces 13 (26) (2021) 30722–30730. [45] K. Chu, Y.J. Luo, P. Shen, X.C. Li, Q.Q. Li, Y.L.Guo, Unveiling the synergy of O-vacancy and heterostructure over MoO3- x /MXene for N2 electroreduction to NH3, Adv. Energy Mater. 12 (3) (2022) 2103022. [46] Y. Wang, X.Y. Zhou, Z. Chen, B. Cai, Z.Z. Ye, C.Y. Gao, J.Y. Huang, Synthesis of cubic LiNbO3 nanoparticles and their application in vitro bioimaging, Appl. Phys. A 117 (4) (2014) 2121–2126. [47] Z.L. Jian, X. Lu, Z. Fang, Y.S. Hu, J. Zhou, W. Chen, L.Q.Chen, LiNb3O8 as a novel anode material for lithium-ion batteries, Electrochem. Commun. 13 (10) (2011) 1127–1130. |