[1] K.B. McAuley, D.A. MacDonald, P.J. McLellan, Effects of operating conditions on stability of gas-phase polyethylene reactors, AIChE J. 41 (4) (1995) 868–879. [2] S. Atashrouz, R. Mohammad, B. Nasernejad, J. Soares, Prediction of temperature and concentration profiles in an industrial polymerization fluidized bed reactor under condensed-mode operation, Ind. Eng. Chem. Res. 60 (2) (2021) 990-1013. [3] J.Y. Sun, H.T. Wang, S.H. Tian, X.Q. Fan, Q. Shi, Y. Liu, X.B. Hu, Y. Yang, J.D. Wang, Y.R. Yang, Important mesoscale phenomena in gas phase fluidized bed ethylene polymerization, 颗粒学报(英文版) (2020) (1)116–143. [4] rocess for polymerizing monomers in fluidized beds, US. [5] A. Ben Mrad, N. Sheibat-Othman, S. Valaei, M. Bartke, T.F.L. McKenna, Diffusivity of multicomponent gas mixtures in polyethylene, Macromol. Chem. Phys. 223 (2) (2022) 2100406. [6] A. Ben Mrad, N. Sheibat-Othman, T.F.L. McKenna, A single particle model to predict the impact of induced condensing agents on polymerizing particles during the gas phase polymerization of ethylene, Macromol. React. Eng. 15 (6) (2021) 2100016. [7] Process for polymerizing monomers in fluidized beds, US. [8] L.R. Glicksman, Scaling relationships for fluidized beds, Chem. Eng. Sci. 39 (1984) 1373-1379. [9] L. Glicksman, M. Hyre, K. Woloshun, Simplified scaling relationships for fluidized beds, Powder Technol. 77 (2) (1993) 177–199. [10] M. Horio, A. Nonaka, Y. Sawa, I. Muchi, A new similarity rule for fluidized bed scale-up, AIChE J. 32 (9) (1986) 1466–1482. [11] J. Schouten, M. Vander Stappen, C. Van den Bleek, Scale-up of chaotic fluidized bed hydrodynamics, Chem. Eng. Sci. 51 (1996) 1991-2000. [12] V.V. Kelkar, K.M. Ng, Development of fluidized catalytic reactors: screening and scale-up, AIChE J. 48 (7) (2002) 1498–1518. [13] Y.F. Zhou, Q. Shi, Z.L. Huang, Z.W. Liao, J.D. Wang, Y.R. Yang, Realization and control of multiple temperature zones in liquid-containing gas-solid fluidized bed reactor, AIChE J. 62 (5) (2016) 1454–1466. [14] Y.K. Ho, A. Shamiri, F.S. Mjalli, M. Hussain, Control of industrial gas phase propylene polymerization in fluidized bed reactors, J. Process. Control 22 (6) (2012) 947–958. [15] R.A. Hutchinson, W.H. Ray, Polymerization of olefins through heterogeneous catalysis—the effect of condensation cooling on particle ignition, J. Appl. Polym. Sci. 43 (7) (1991) 1387–1390. [16] J. Kosek, Z. Grof, A. Ák, F. Štěpánek, M.Marek, Dynamics of particle growth and overheating in gas-phase polymerization reactors, Chem. Eng. Sci. 56 (13) (2001) 3951–3977. [17] B. A, Gorbach, Dynamics and stability analysis of solid catalyzed gas-phase polymerization of olefins in continuous stirred bed reactors, Chem. Eng. Sci. 55 (20) (2000) 4461–4479. [18] L. Luo, N. Zhang, Z. Xia, T. Qiu, Dynamics and stability analysis of gas-phase bulk polymerization of propylene, Chem. Eng. Sci. 143 (2016) 12–22. [19] H.Z. Wang, N. Zhang, T. Qiu, J.S. Zhao, X.R. He, B.Z. Chen, A process design framework for considering the stability of steady state operating points and Hopf singularity points in chemical processes, Chem. Eng. Sci. 99 (2013) 252–264. [20] N.P.G. Salau, A.R. Secchi, J.O. Trierweiler, G.A. Neumann, Dynamic behaviour and control of an industrial fluidised-bed polymerisation reactor, Comput. Aided Chem. Eng. 20 (C) (2005) 409–414. [21] A. Ajbar, K. Alhumaizi, Gas phase polyethylene reactors A global study of stability behaviour, Chem. Eng. Res. Des. 79 (2) (2001) 195–208. [22] Kyu-Yong, Choi, The dynamic behaviour of fluidized bed reactors for solid catalysed gas phase olefin polymerization, Chem. Eng. Sci. 40 (12) (1985) 2261–2279. [23] N.M. Ghasem, Effect of polymer growth rate and diffusion resistance on the behavior of industrial polyethylene fluidized bed reactor, Chem. Eng. Technol. 24 (10) (2001) 1049–1057. [24] N.M. Ghasem, Effect of polymer particle size and inlet gas temperature on industrial fluidized bed polyethylene reactors, Chem. Eng. Technol. 22 (9) (1999) 777–783. [25] N.P.G. Salau, G. Alberto Neumann, J.O. Trierweiler, A.R.Secchi, Multivariable control strategy based on bifurcation analysis of an industrial gas-phase polymerization reactor, J. Process. Control 19 (3) (2009) 530–538. [26] Y.F. Zhou, C.J. Ren, J.D. Wang, Y.R. Yang, Characterization on hydrodynamic behavior in liquid-containing gas-solid fluidized bed reactor, AIChE J. 59 (4) (2013) 1056–1065. [27] Y.F. Zhou, Q. Shi, Z.L. Huang, J.D. Wang, Y.R. Yang, Z.W. Liao, J. Yang, Effects of interparticle forces on fluidization characteristics in liquid-containing and high-temperature fluidized beds, Ind. Eng. Chem. Res. 52 (2013) 16666-16674. [28] Y.F. Zhou, J.D. Wang, Y.R. Yang, W.Q. Wu, Modeling of the temperature profile in an ethylene polymerization fluidized-bed reactor in condensed-mode operation, Ind. Eng. Chem. Res. 52 (12) (2013) 4455–4464. [29] S. R, Miller, Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations, Int. J. Multiph. Flow 24 (6) (1998) 1025–1055. [30] T. Kitano, J. Nishio, R. Kurose, S.Komori, Evaporation and combustion of multicomponent fuel droplets, Fuel 136 (2014) 219–225. [31] X.Q. Fan, J.Y. Sun, J.D. Wang, Z.L. Huang, Z.W. Liao, G.D. Han, Y.R. Yang, L. Xie, H.Y.Su, Stability analysis of ethylene polymerization in a liquid-containing gas-solid fluidized bed reactor, Ind. Eng. Chem. Res. 57 (16) (2018) 5616–5629. [32] F, Jalali-Farahani, Use of homotopy-continuation method in stability analysis of multiphase, reacting systems, Comput. Chem. Eng. 24 (8) (2000) 1997–2008. [33] Y.A. Kuznetsov, Element of applied bifurcation theory, In:Applied Mathematical Sciences, Springer, 1994. [34] X.Q. Fan, J.Y. Sun, Y. Yang, J.D. Wang, Z.L. Huang, Z.W. Liao, G.D. Han, Y.R. Yang, L. Xie, H.Y. Su, Thermal-stability analysis of ethylene-polymerization fluidized-bed reactors under condensed-mode operation through a TPM-PBM integrated model, Ind. Eng. Chem. Res. 58 (2019) 9486-9499. [35] K. Daizo, O. Levenspiel, Fluidization Engineering, 2nd edition, Butterworth Heinemann, New York, 1991. [36] H. Hatzantonis, H. Yiannoulakis, A. Yiagopoulos, C. Kiparissides, Recent developments in modeling gas-phase catalyzed olefin polymerization fluidized-bed reactors: the effect of bubble size variation on the reactor’s performance, Chem. Eng. Sci. 55 (16) (2000) 3237–3259. [37] A. Shamiri, S.W. Wong, M.F. Zanil, M.A. Hussain, N. Mostoufi, Modified two-phase model with hybrid control for gas phase propylene copolymerization in fluidized bed reactors, Chem. Eng. J. 264 (2015) 706–719. [38] C.G. Yin, Modelling of heating and evaporation of n-heptane droplets: towards a generic model for fuel droplet/particle conversion, Fuel 141 (2015) 64–73. [39] A. Dhooge, W. Govaerts, Y.A.Kuznetsov, Matcont, ACM Trans. Math. Softw. 29 (2) (2003) 141–164. [40] H.C. Chang, L. Chen, Bifurcation characteristics of nonlinear systems under conventional pid control, Chem. Eng. Sci. 39 (7–8) (1984) 1127–1142. |