[1] S. Foucault, G. Ascanio, P.A. Tanguy, Power characteristics in coaxial mixing: Newtonian and non-Newtonian fluids, Ind. Eng. Chem. Res. 44 (14) (2005) 5036–5043. [2] P. Wang, T. Reviol, S. Kluck, P. Würtz, M. Böhle, Mixing of non-Newtonian fluids in a cylindrical stirred vessel equipped with a novel side-entry propeller, Chem. Eng. Sci. 190 (2018) 384–395. [3] A. Jsa, B. Hldm, C. Rdla, A. Fdaoj, A. Jrn, A. Gjdc, Two-dimensional shear rate field and flow structures of a pseudoplastic fluid in a stirred tank using particle image velocimetry, Chem. Eng. Sci. 248 (2022) 117198. [4] Y.Y. Bao, B. Yang, Y. Xie, Z.M. Gao, Z.D. Zhang, T. Liu, X.H. Gao, Power demand and mixing performance of coaxial mixers in non-Newtonian fluids, J. Chem. Eng. Japan 44 (2) (2011) 57–66. [5] S. Saeed, F. Ein-Mozaffari, S.R.Upreti, Using computational fluid dynamics to study the dynamic behavior of the continuous mixing of Herschel–Bulkley fluids, Ind. Eng. Chem. Res. 47 (19) (2008) 7465–7475. [6] M. Zlokarnik, Stirring: Theory and Practice, Wiley-VCH, Weinhim, 2001. [7] L. Pakzad, F. Ein-Mozaffari, P. Chan, Using electrical resistance tomography and computational fluid dynamics modeling to study the formation of cavern in the mixing of pseudoplastic fluids possessing yield stress, Chem. Eng. Sci. 63 (9) (2008) 2508–2522. [8] P. Prajapati, F. Ein-Mozaffari, CFD investigation of the mixing of yield-pseudoplastic fluids with anchor impellers, Chem. Eng. Technol. 32 (8) (2009) 1211–1218. [9] L. Rudolph, M. Schäfer, V. Atiemo-Obeng, M.Kraume, Experimental and numerical analysis of power consumption for mixing of high viscosity fluids with a co-axial mixer, Chem. Eng. Res. Des. 85 (5) (2007) 568–575. [10] Z.H. Liu, X.Y. Yang, Z.M. Xie, R.L. Liu, C.Y. Tao, Y.D. Wang, Chaotic mixing performance of high-viscosity fluid synergistically intensified by flexible impeller and floating particles, CIESC J. 64 (8) (2013) 2794–2800, in Chinese. [11] M.R. Motley, Y.L. Young, Performance-based design and analysis of flexible composite propulsors, J. Fluids Struct. 27 (8) (2011) 1310–1325. [12] G.M. Mule, A.A. Kulkarni, Mixing of medium viscosity liquids in a stirred tank with fractal impeller, Theor. Found. Chem. Eng. 50 (6) (2016) 914–921. [13] Y.Y. Bao, Y. Lu, Q.Q. Liang, L. Li, Z.M. Gao, Power demand and mixing performance of coaxial mixers in a stirred tank with CMC solution, Chin. J. Chem. Eng. 23 (4) (2015) 623–632. [14] L. Pakzad, F. Ein-Mozaffari, S.R. Upreti, A. Lohi, A novel and energy-efficient coaxial mixer for agitation of non-Newtonian fluids possessing yield stress, Chem. Eng. Sci. 101 (2013) 642–654. [15] B.Q. Liu, N. S, Z.J. Jin, Y.K. Zhang, B. Sunden, Numerical investigation and estimating correlation of micromixing performance of coaxial mixers, Ind. Eng. Chem. Res. 58 (49) (2019) 22376–22388. [16] F. Auger, C. André, L. Bouvier, A. Redl, M.H. Morel, G. Delaplace, Power requirement for mixing shear-thinning fluids with a planetary mixer, Chem. Eng. Technol. 38 (9) (2015) 1543–1549. [17] G. Delaplace, L. Bouvier, A. Moreau, C. Andre, An arrangement of ideal reactors as a way to model homogenizing processes with a planetary mixer, AIChE J. 57 (7) (2011) 1678–1683. [18] H. Ameur, 3D hydrodynamics involving multiple eccentric impellers in unbaffled cylindrical tank, Chin. J. Chem. Eng. 24 (5) (2016) 572–580. [19] H. Ameur, Effect of the shaft eccentricity and rotational direction on the mixing characteristics in cylindrical tank reactors, Chin. J. Chem. Eng. 24 (12) (2016) 1647–1654. [20] L. Pakzad, F. Ein-Mozaffari, S.R. Upreti, A. Lohi, Agitation of Herschel–Bulkley fluids with the Scaba-anchor coaxial mixers, Chem. Eng. Res. Des. 91 (5) (2013) 761–777. [21] L. Pakzad, F. Ein-Mozaffari, S.R. Upreti, A. Lohi, Evaluation of the mixing of non-Newtonian biopolymer solutions in the reactors equipped with the coaxial mixers through tomography and CFD, Chem. Eng. J. 215-216 (2013) 279–296. [22] L. Pakzad, F. Ein-Mozaffari, S.R. Upreti, A. Lohi, Using tomography to assess the efficiency of the coaxial mixers in agitation of yield-pseudoplastic fluids, Chem. Eng. Res. Des. 91 (9) (2013) 1715–1724. [23] B.Q. Liu, J.L. Liu, Y.K. Zhang, M.Q. Chen, F.L. Qin, Z.J. Jin, Experimental research on the power consumption of a coaxial mixer in a fluid with high viscosity, Ind. Eng. Chem. Res. 52 (20) (2013) 6862–6867. [24] B.Q. Liu, Y.K. Zhang, M.Q. Chen, P. Li, Z.J. Jin, Power consumption and flow field characteristics of a coaxial mixer with a double inner impeller, Chin. J. Chem. Eng. 23 (1) (2015) 1–6. [25] P.A. Tanguy, G. Ascanio, Mixing of shear-thinning fluids with dual off-centred impellers, Can. J. Chem. Eng. 83 (3) (2008) 393–400. [26] F. Cabaret, C. Rivera, L. Fradette, M. Heniche, P.A. Tanguy, Hydrodynamics performance of a dual shaft mixer with viscous Newtonian liquids, Chem. Eng. Res. Des. 85 (5) (2007) 583–590. [27] S.S. Wang, H. Li, C.Y. Tao, R.L. Liu, Y.D. Wang, Z.H. Liu, Study on cavern evolution and performance of three mixers in agitation of yield-pseudoplastic fluids, Chin. J. Chem. Eng. 55 (2023) 111–122. [28] M. Jamshidzadeh, A. Kazemzadeh, F. Ein-Mozaffari, A.Lohi, Analysis of power consumption for gas dispersion in non-Newtonian fluids with a coaxial mixer: New correlations for Reynolds and power numbers, Chem. Eng. J. 401 (2020) 126002. [29] V. Buwa, A. Dewan, A.F. Nasser, F. Durst, Fluid dynamics and mixing of single-phase flow in a stirred vessel with a grid disc impeller: Experimental and numerical investigations, Chem. Eng. Sci. 61 (9) (2006) 2815–2822. [30] A. Kazemzadeh, F. Ein-Mozaffari, A. Lohi, L. Pakzad, Investigation of hydrodynamic performances of coaxial mixers in agitation of yield-pseudoplasitc fluids: Single and double central impellers in combination with the anchor, Chem. Eng. J. 294 (2016) 417–430. [31] M.M. Buffo, L.J. Corrêa, M.N. Esperança, A.J.G. Cruz, C.S. Farinas, A.C. Badino, Influence of dual-impeller type and configuration on oxygen transfer, power consumption, and shear rate in a stirred tank bioreactor, Biochem. Eng. J. 114 (2016) 130–139. [32] H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, World Book Inc. 2010. [33] D.Y. Gu, Z.H. Liu, Z.M. Xie, J. Li, C.Y. Tao, Y.D. Wang, Numerical simulation of solid–liquid suspension in a stirred tank with a dual punched rigid-flexible impeller, Adv. Powder Technol. 28 (10) (2017) 2723–2734. [34] D.Y. Gu, C. Cheng, Z.H. Liu, Y.D. Wang, Numerical simulation of solid–liquid mixing characteristics in a stirred tank with fractal impellers, Adv. Powder Technol. 30 (10) (2019) 2126–2138. [35] N.G. Deen, T. Solberg, B.H. Hjertager, Flow generated by an aerated Rushton impeller: Two-phase PIV experiments and numerical simulations, Can. J. Chem. Eng. 80 (4) (2008) 1–15. [36] A. Brucato, M. Ciofalo, F. Grisafi, G. Micale, Numerical prediction of flow fields in baffled stirred vessels: A comparison of alternative modelling approaches, Chem. Eng. Sci. 53 (21) (1998) 3653–3684. [37] A. Paglianti, G. Montante, Simultaneous measurements of liquid velocity and tracer concentration in a continuous flow stirred tank, Chem. Eng. Sci. 216 (2020) 115495. [38] Z. Jaworski, W. Bujalski, N. Otomo, A.W. Nienow, CFD study of homogenization with dual rushton turbines—Comparison with experimental results: Part I: Initial studies, Chem. Eng. Res. Des. 78 (3) (2000) 327–333. [39] Q. Wu, X.X. Yan, X. Xia, C.Y. Zhang, T. Xue, K.C. Yu, P. Liang, X. Huang, Analysis of the mixing performance of a full-scale membrane bioreactor for municipal wastewater treatment, Bioresour. Technol. 250 (2018) 932–935. [40] M.W.D. Brannock, Y. Wang, G. Leslie, Evaluation of full-scale membrane bioreactor mixing performance and the effect of membrane configuration, J. Membr. Sci. 350 (1–2) (2010) 101–108. [41] Z.M. Yuan, M.L. Chen, L.B. Jia, C.Y. Ji, A. Incecik, Wave-riding and wave-passing by ducklings in formation swimming, J. Fluid Mech. 928 (2021) R2. |