[1] M. Al-Samhan, J. Al-Fadhli, A.M. Al-Otaibi, F. Al-Attar, R. Bouresli, M.S. Rana, Prospects of refinery switching from conventional to integrated:an opportunity for sustainable investment in the petrochemical industry, Fuel 310(2022)122161. [2] X. Zhou, Z.Z. Sun, H. Yan, X. Feng, H. Zhao, Y.B. Liu, X.B. Chen, C.H. Yang, Produce petrochemicals directly from crude oil catalytic cracking, a techno-economic analysis and life cycle society-environment assessment, J. Clean. Prod. 308(2021)127283. [3] X. Zhou, S.F. Li, Y. Wang, J. Zhang, Z.B. Zhang, C.G. Wu, X.B. Chen, X. Feng, Y.B. Liu, H. Zhao, H. Yan, C.H. Yang, Crude oil hierarchical catalytic cracking for maximizing chemicals production:pilot-scale test, process optimization strategy, techno-economic-society-environment assessment, Energy Convers. Manag. 253(2022)115149. [4] M. Alabdullah, A. Rodriguez-Gomez, T. Shoinkhorova, A. Dikhtiarenko, A.D. Chowdhury, I. Hita, S.R. Kulkarni, J. Vittenet, S.M. Sarathy, P. Castaño, A. Bendjeriou-Sedjerari, E. Abou-Hamad, W. Zhang, O.S. Ali, I. Morales-Osorio, W. Xu, J. Gascon, One-step conversion of crude oil to light olefins using a multi-zone reactor, Nat. Catal. 4(3)(2021)233-241. [5] S.M. Sadrameli, Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins:a state-of-the-art review II:catalytic cracking review, Fuel 173(2016)285-297. [6] F.E. Gao, J.Y. Liu, Synergistic effect of Broensted/Lewis acid in olefin aromatization during MTO over Zn modified H-SAPO-34 zeolite:a periodic DFT study, Mol. Catal. 533(2022)112755. [7] S. Xing, R. Zhang, M. Han, Structure/acid-reactivity relationship of the zeolite catalyzed alkylation of benzene with 1-dodecene by constructing micro-meso composites, Mol. Catal., 531(2022)112703. [8] Y.L. Wang, X.C. Zhang, G.G. Zhan, M.M. Wang, W.Q. Li, J.P. Cao, Comparing the effects of hollow structure and mesoporous structure of ZSM-5 zeolites on catalytic performances in methanol aromatization, Mol. Catal. 540(2023)113044. [9] Y. Li, J.H. Yu, New stories of zeolite structures:their descriptions, determinations, predictions, and evaluations, Chem. Rev. 114(14)(2014)7268-7316. [10] N. Rahimi, R. Karimzadeh, Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins:a review, Appl. Catal. A 398(1-2)(2011)1-17. [11] F. Mohammadparast, R. Halladj, S. Askari, The crystal size effect of nano-sized ZSM-5 in the catalytic performance of petrochemical processes:a review, Chem. Eng. Commun. 202(4)(2015)542-556. [12] Y.E. Bai, G.H. Zhang, D.Y. Liu, Y.H. Zhang, L. Zhao, J.S. Gao, C.M. Xu, Q.F. Meng, X.H. Gao, The advance in catalytic pyrolysis of naphtha technology using ZSM-5 as catalyst, Appl. Catal. A 628(2021)118399. [13] Y. Yoshimura, N. Kijima, T. Hayakawa, K. Murata, K. Suzuki, F. Mizukami, K. Matano, T. Konishi, T. Oikawa, M. Saito, T. Shiojima, K. Shiozawa, K. Wakui, G. Sawada, K. Sato, S. Matsuo, N. Yamaoka, Catalytic cracking of naphtha to light olefins, Catal. Surv. Jpn. 4(2)(2001)157-167. [14] V. Zholobenko, A. Garforth, J. Dwyer, TGA-DTA study on calcination of zeolitic catalysts, Thermochim. Acta 294(1)(1997)39-44. [15] M.J. Nash, A.M. Shough, D.W. Fickel, D.J. Doren, R.F. Lobo, High-temperature dehydrogenation of Broensted acid sites in zeolites, J. Am. Chem. Soc. 130(8)(2008)2460-2462. [16] K.A. Al-majnouni, J.H. Yun, R.F. Lobo, High-temperature produced catalytic sites selective for n-alkane dehydrogenation in acid zeolites:the case of HZSM-5, ChemCatChem 3(8)(2011)1333-1341. [17] J.H. Yun, R.F. Lobo, Effects of temperature pretreatment on propane cracking over H-SSZ-13 zeolites, Catal. Sci. Technol. 5(1)(2015)264-273. [18] J.Y. Lu, Z. Zhao|, C.M. Xu, A.J. Duan, Pu Zhang State Key Laboratory of Heavy Oil Processing, C.U.O. Petroleum, Beijing, China, Effects of calcination temperature on the acidity and catalytic performances of HZSM-5 zeolite catalysts for the catalytic cracking of n-butane, J. Nat. Gas Chem. 14(4)(2005)213-220. [19] A.T. To, R.E. Jentoft, W.E. Alvarez, S.P. Crossley, D.E. Resasco, Generation of synergistic sites by thermal treatment of HY zeolite. Evidence from the reaction of hexane isomers, J. Catal. 317(2014)11-21. [20] R. Pouria, L. Vafi, R. Karimzadeh, Propane catalytic cracking on pretreated La-ZSM-5 zeolite during calcination for light olefins production, J. Rare Earths 35(6)(2017)542-550. [21] X. Hou, Z.Z. Ma, B.C. Chen, J.T. Zhang, Y.L. Ning, L. Zhao, E.X. Yuan, Role of normal/cyclo-alkane in hydrocarbons pyrolysis process and product distribution, J. Anal. Appl. Pyrol., 156(2021)105130. [22] J.Y. Sun, Y.H. Tian, J.F. Cao, Q.L. Huang, Z.L. Fang, Z.Z. Ma, X. Hou, E.X. Yuan, T.T. Cui, Roles of ethanol in coke formation and HZSM-5 deactivation during n-heptane catalytic cracking, New J. Chem. 46(8)(2022)3916-3924. [23] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem. 57(4)(1985)603-619. [24] N. Zhang, D.S. Mao, X.L. Zhai, Selective conversion of bio-ethanol to propene over nano-HZSM-5 zeolite:remarkably enhanced catalytic performance by fluorine modification, Fuel Process. Technol. 167(2017)50-60. [25] Y.N. Wang, X.W. Guo, C. Zhang, F.L. Song, X.S. Wang, H.O. Liu, X.C. Xu, C.S. Song, W.P. Zhang, X.M. Liu, X.W. Han, X.H. Bao, Influence of calcination temperature on the stability of fluorinated nanosized HZSM-5 in the methylation of biphenyl, Catal. Lett. 107(3)(2006)209-214. [26] C. Auepattana-aumrung, S. Wannapaiboon, S. Wannakao, S. Praserthdam, B. Jongsomjit, J. Panpranot, P. Praserthdam, A study of the acidity on catalyst surface to control 1-butene reaction mechanism of metallosilicate catalysts, Mol. Catal. 529(2022)112533. [27] Q. Zhang, W. Huang, W.H. Cui, X.Z. Dong, G.Y. Liu, Y.P. Xu, Z.M. Liu, Optimization and modification of ZSM-5 zeolite for efficient catalytic cracking of 1, 2-dichloroethane, Mol. Catal. 545(2023)113189. [28] G. Park, J. Kang, S.J. Park, Y.T. Kim, G. Kwak, S. Kim, Effect of acid modification of ZSM-5 catalyst on performance and coke formation for methanol-to-hydrocarbon reaction, Mol. Catal. 531(2022)112702. [29] L.J. Guan, C.M. Huang, D.M. Han, B.B. He, L.H. Zhu, D.D. He, Y. Mei, Y. Zu, HZSM-5 zeolite cross-linked with ultrathin siliceous layer for intensifying catalytic cracking and diffusion of n-butane, Fuel 315(2022)123252. [30] J.A. van Bokhoven, M. Tromp, D.C. Koningsberger, J.T. Miller, J.A.Z. Pieterse, J.A. Lercher, B.A. Williams, H.H. Kung, An explanation for the enhanced activity for light alkane conversion in mildly steam dealuminated mordenite:the dominant role of adsorption, J. Catal. 202(1)(2001)129-140. [31] S.M.T. Almutairi, B. Mezari, G.A. Filonenko, P.C.M.M. Magusin, M.S. Rigutto, E.A. Pidko, E.J.M. Hensen, Influence of extraframework aluminum on the Broensted acidity and catalytic reactivity of faujasite zeolite, ChemCatChem 5(2)(2013)452-466. [32] S. Schallmoser, T. Ikuno, M.F. Wagenhofer, R. Kolvenbach, G.L. Haller, M. Sanchez-Sanchez, J.A. Lercher, Impact of the local environment of Broensted acid sites in ZSM-5 on the catalytic activity in n-pentane cracking, J. Catal. 316(2014)93-102. [33] C. Liu, G.N. Li, E.J.M. Hensen, E.A. Pidko, Nature and catalytic role of extraframework aluminum in faujasite zeolite:a theoretical perspective, ACS Catal. 5(11)(2015)7024-7033. [34] S. Kotrel, H. Knözinger, B.C. Gates, The Haag-Dessau mechanism of protolytic cracking of alkanes, Microporous Mesoporous Mater. 35-36(2000)11-20. [35] A. Corma, A.V. Orchillés, Current views on the mechanism of catalytic cracking, Microporous Mesoporous Mater. 35-36(2000)21-30. [36] K. Kubo, H. Iida, S. Namba, A. Igarashi, Selective formation of light olefin by n-heptane cracking over HZSM-5 at high temperatures, Microporous Mesoporous Mater. 149(1)(2012)126-133. [37] H.M. Qiao, Z.Z. Ma, X. Hou, B.C. Chen, J. Huang, E.X. Yuan, T.T. Cui, Roles of molecular structure in the catalytic cracking of n-heptane, methylcyclohexane and cyclopentene over HZSM-5 zeolites, ChemistrySelect 7(48)(2022) e202203425. [38] S. Jolly, J. Saussey, M.M. Bettahar, J.C. Lavalley, E. Benazzi, Reaction mechanisms and kinetics in the n-hexane cracking over zeolites, Appl. Catal. A 156(1)(1997)71-96. [39] A.F.H. Wielers, M. Vaarkamp, M.F.M. Post, Relation between properties and performance of zeolites in paraffin cracking, J. Catal. 127(1)(1991)51-66. [40] Z.Z. Ma, X. Hou, B.C. Chen, L. Zhao, E.X. Yuan, T.T. Cui, Analysis of n-hexane, 1-hexene, cyclohexane and cyclohexene catalytic cracking over HZSM-5 zeolites:effects of molecular structure, React. Chem. Eng. 7(8)(2022)1762-1778. [41] X. Hou, Y. Qiu, E.X. Yuan, X.W. Zhang, G.Z. Liu, SO42-/TiO2 promotion on HZSM-5 for catalytic cracking of paraffin, Appl. Catal. A 537(2017)12-23. |