[1] R.S. Kamath, I.E. Grossmann, L.T. Biegler, Aggregate models based on improved group methods for simulation and optimization of distillation systems, Comput. Chem. Eng. 34(8)(2010)1312-1319. [2] Yu, K.-T. and Yuan, X., Introduction to computational mass transfer, Springer (2014). [3] X. Qian, S.K. Jia, K.J. Huang, H.S. Chen, Y. Yuan, X.G. Yuan, L. Zhang, MPC-PI cascade control for the Kaibel dividing wall column integrated with data-driven soft sensor model, Chem. Eng. Sci. 231(2021)116240. [4] W.F. Shen, L.C. Dong, S.A. Wei, J.E. Li, H. Benyounes, X.Q. You, V. Gerbaud, Systematic design of an extractive distillation for maximum-boiling azeotropes with heavy entrainers, AlChE. J. 61(11)(2015)3898-3910. [5] R. Tumbalam Gooty, R. Agrawal, M. Tawarmalani, An MINLP formulation for the optimization of multicomponent distillation configurations, Comput. Chem. Eng. 125(2019)13-30. [6] Y.J. Ma, Y.Q. Luo, S. Zhang, X.G. Yuan, Simultaneous optimization of complex distillation systems and heat integration using pseudo-transient continuation models, Comput. Chem. Eng. 108(2018)337-348. [7] M. Steinbrunn, G. Moerkotte, A. Kemper, Heuristic and randomized optimization for the join ordering problem, VLDB J. 6(3)(1997)191-208. [8] M.F. Cardoso, R.L. Salcedo, S.F. de Azevedo, D. Barbosa, A simulated annealing approach to the solution of minlp problems, Comput. Chem. Eng. 21(12)(1997)1349-1364. [9] E.S. Fraga, T.R. Senos Matias, Synthesis and optimization of a nonideal distillation system using a parallel genetic algorithm, Comput. Chem. Eng. 20(1996) S79-S84. [10] J.H. Holland, Adaptation in Natural and Artificial Systems:An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. The MIT Press,(1992). [11] X. Qian, S.K. Jia, K.J. Huang, H.S. Chen, Y. Yuan, L. Zhang, Optimal design of Kaibel dividing wall columns based on improved particle swarm optimization methods, J. Clean. Prod. 273(2020)123041. [12] M.K. Liang, J.Y. Song, K.F. Zhao, S.K. Jia, X. Qian, X.G. Yuan, Optimization of dividing wall columns based on online Kriging model and improved particle swarm optimization algorithm, Comput. Chem. Eng. 166(2022)107978. [13] H. Yeomans, I.E. Grossmann, Optimal design of complex distillation columns using rigorous tray-by-tray disjunctive programming models, Ind. Eng. Chem. Res. 39(11)(2000)4326-4335. [14] F. Trespalacios, I. Grossmann, Review of mixed-integer nonlinear and generalized disjunctive programming methods, Chem. Ing. Tech. 86(7)(2014)991-1012. [15] A. Carrero-Parreño, V.C. Onishi, R. Ruiz-Femenia, R. Salcedo-Díaz, J.A. Caballero, J.A. Reyes-Labarta, Optimization of multistage membrane distillation system for treating shale gas produced water, Desalination 460(2019)15-27. [16] D.A. Linan, L.A. Ricardez-Sandoval, A Benders decomposition framework for the optimization of disjunctive superstructures with ordered discrete decisions, AlChE. J. 69(5)(2023):e18008. [17] M. Barttfeld, P.A. Aguirre, I.E. Grossmann, A decomposition method for synthesizing complex column configurations using tray-by-tray GDP models, Comput. Chem. Eng. 28(11)(2004)2165-2188. [18] J.A. Caballero, I.E. Grossmann, Optimal synthesis of thermally coupled distillation sequences using a novel MILP approach, Comput. Chem. Eng. 61(2014)118-135. [19] X. Zhang, Z. Song, T. Zhou, Rigorous design of reaction-separation processes using disjunctive programming models, Comput. Chem. Eng. 111(2018)16-26. [20] F.J.M. Neves, D.C.M. Silva, N.M.C. Oliveira, A robust strategy for optimizing complex distillation columns, Comput. Chem. Eng. 29(6)(2005)1457-1471. [21] K. Kraemer, S. Kossack, W. Marquardt, Efficient optimization-based design of distillation processes for homogeneous azeotropic mixtures, Ind. Eng. Chem. Res. 48(14)(2009)6749-6764. [22] A.W. Dowling, L.T. Biegler, A framework for efficient large scale equation-oriented flowsheet optimization, Comput. Chem. Eng. 72(2015)3-20. [23] R.C. Pattison, A.M. Gupta, M. Baldea, Equation-oriented optimization of process flowsheets with dividing-wall columns, AlChE. J. 62(3)(2016)704-716. [24] Y.J. Ma, Y.Q. Luo, X.G. Yuan, Equation-oriented optimization of reactive distillation systems using pseudo-transient models, Chem. Eng. Sci. 195(2019)381-398. [25] J.H. Ghouse, Q. Chen, M.A. Zamarripa, A. Lee, A.P. Burgard, I.E. Grossmann, D.C. Miller, A comparative study between GDP and NLP formulations for conceptual design of distillation columns. 13th International Symposium on Process Systems Engineering (PSE 2018). Amsterdam:Elsevier,(2018)865-870. [26] Y.J. Ma, Z.K. Yang, A. El-Khoruy, N. Zhang, J.E. Li, B.J. Zhang, L. Sun, Simultaneous synthesis and design of reaction-separation-recycle processes using rigorous models, Ind. Eng. Chem. Res. 60(19)(2021)7275-7290. [27] Y.J. Ma, Y.Q. Luo, X.G. Yuan, Simultaneous optimization of complex distillation systems with a new pseudo-transient continuation model, Ind. Eng. Chem. Res. 56(21)(2017)6266-6274. [28] T.N.G. Borhani, V. Akbari, M. Afkhamipour, M.K.A. Hamid, Z.A. Manan, Comparison of equilibrium and non-equilibrium models of a tray column for post-combustion CO2 capture using DEA-promoted potassium carbonate solution, Chem. Eng. Sci. 122(2015)291-298. [29] B.M. Jaćimović, Entrainment effect on tray efficiency, Chem. Eng. Sci. 55(18)(2000)3941-3949. [30] D.C. Freshwater, Equilibrium stage separation operations in chemical engineering, Chem. Eng. J. 25(1)(1982)122. [31] X. Qian, K.H. Lin, S.K. Jia, L.T. Biegler, K.J. Huang, Nonlinear model predictive control for dividing wall columns, AlChE. J. 69(6)(2023):e18062. [32] Z.Y. Jiang, T.J. Mathew, H.B. Zhang, J. Huff, U. Nallasivam, M. Tawarmalani, R. Agrawal, Global optimization of multicomponent distillation configurations:global minimization of total cost for multicomponent mixture separations, Comput. Chem. Eng. 126(2019)249-262. [33] H.S. Chen, M.A. Stadtherr, Enhancements of the Han-Powell method for successive quadratic programming, Comput. Chem. Eng. 8(3-4)(1984)229-234. [34] X.W. Liu, S.K. Jia, Y.Q. Luo, X.G. Yuan, Smooth penalty function method for rigorous optimization of distillation processes, AlChE. J. 68(3)(2022):e17541. |