[1] X.T. You, S.F. Deng, Y.C. Huang, Z.Q. Liu, Y.H. Hu, Thermosetting mechanism study of silicon-containing polyarylacetylene via in situ FTIR and solid-state NMR spectroscopy, J. Appl. Polym. Sci. 136(13)(2019)47301. [2] S.B. Nie, C. Zhou, C. Peng, L. Liu, C. Zhang, X. Dong, D.Y. Wang, Thermal oxidative degradation kinetics of novel intumescent flame-retardant polypropylene composites, J. Therm. Anal. Calorim. 120(2)(2015)1183-1191. [3] C.J. Wang, Z.H. Wang, S.P. Liu, H.X. Luo, W.H. Fan, Z.J. Liu, F.T. Liu, H.Y. Wang, Anti-corrosion and wear-resistant coating of waterborne epoxy resin by concrete-like three-dimensional functionalized framework fillers, Chem. Eng. Sci. 242(2021)116748. [4] K.K. Guo, P. Li, Y.P. Zhu, F. Wang, H.M. Qi, Thermal curing and degradation behaviour of silicon-containing arylacetylene resins, Polym. Degrad. Stab. 131(2016)98-105. [5] F. Gao, L.L. Zhang, L.M. Tang, F.R. Huang, L. Du, Synthesis and characterization of poly (tetramethyldisiloxane-ethynylenephenyleneethynylene) resins, J. Polym. Res. 18(2)(2011)163-169. [6] S. Poovathingal, E.C. Stern, I. Nompelis, T.E. Schwartzentruber, G.V. Candler, Nonequilibrium flow through porous thermal protection materials, Part II:Oxidation and pyrolysis, J. Comput. Phys. 380(2019)427-441. [7] W.J. Li, J.E. Huang, Z.W. Zhang, H.M. Huang, J. Liang, Competition mechanism during oxidation of pyrolysis gases in nonequilibrium boundary layer on thermal protection performance of charring composites, Polym. Compos. 41(7)(2020)2732-2743. [8] D.X. Tan, T.J. Shi, Z. Li, Synthesis, characterization, and non-isothermal curing kinetics of two silicon-containing arylacetylenic monomers, Res. Chem. Intermed. 37(8)(2011)831-845. [9] C. Nair, Advances in addition-cure phenolic resins, Prog. Polym. Sci. 29(5)(2004)401-498. [10] Z.Q. Chen, Y.F. Chen, H.B. Liu, Pyrolysis of phenolic resin by TG-MS and FTIR analysis, Adv. Mater. Res. 631-632(2013)104-109. [11] B.K. Bessire, T.K. Minton, Decomposition of phenolic impregnated carbon ablator (PICA) as a function of temperature and heating rate, ACS Appl. Mater. Interfaces 9(25)(2017)21422-21437. [12] M.V. Kok, E.Özgür, Thermal analysis and kinetics of biomass samples, Fuel Process. Technol. 106(2013)739-743. [13] Q.V. Bach, K.Q. Tran,Ø. Skreiberg, Combustion kinetics of wet-torrefied forest residues using the distributed activation energy model (DAEM), Appl. Energy 185(2017)1059-1066. [14] Z.Q. Zhang, H.Q. Duan, Y.J. Zhang, X.J. Guo, X. Yu, X.G. Zhang, M.M. Rahman, J.M. Cai, Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction:Kinetic and thermodynamic analyses, Energy 207(2020)118290. [15] M.T. Taghizadeh, N. Yeganeh, M. Rezaei, Kinetic analysis of the complex process of poly (vinyl alcohol) pyrolysis using a new coupled peak deconvolution method, J. Therm. Anal. Calorim. 118(3)(2014)1733-1746. [16] C. Ma, D. Sánchez-Rodríguez, T. Kamo, A comprehensive study on the oxidative pyrolysis of epoxy resin from fiber/epoxy composites:Product characteristics and kinetics, J. Hazard. Mater. 412(2021)125329. [17] A. Soria-Verdugo, L.M. Garcia-Gutierrez, L. Blanco-Cano, N. Garcia-Hernando, U. Ruiz-Rivas, Evaluating the accuracy of the Distributed Activation Energy Model for biomass devolatilization curves obtained at high heating rates, Energy Convers. Manag. 86(2014)1045-1049. [18] M. Fernandez-Lopez, G.J. Pedrosa-Castro, J.L. Valverde, L. Sanchez-Silva, Kinetic analysis of manure pyrolysis and combustion processes, Waste Manag. 58(2016)230-240. [19] C.J. Deng, J.M. Cai, R.H. Liu, Kinetic analysis of solid-state reactions:Evaluation of approximations to temperature integral and their applications, Solid State Sci. 11(8)(2009)1375-1379. [20] P. Hadi, M. Xu, C.S.K. Lin, C.W. Hui, G. McKay, Waste printed circuit board recycling techniques and product utilization, J. Hazard. Mater. 283(2015)234-243. [21] H.R. Liu, C.J. Wang, B. Chen, Z. Zhang, A further study of pyrolysis of carbon fibre-epoxy composite from hydrogen tank:Search optimization for kinetic parameters via a Shuffled Complex Evolution, J. Hazard. Mater. 374(2019)20-25. [22] K. Cheng, W.T. Winter, A.J. Stipanovic, A modulated-TGA approach to the kinetics of lignocellulosic biomass pyrolysis/combustion, Polym. Degrad. Stab. 97(9)(2012)1606-1615. [23] S. Bhoi, T. Banerjee, K. Mohanty, Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF, Fuel 136(2014)326-333. [24] F. Castro-Marcano, A.M. Kamat, M.F. Russo, A.C.T. van Duin, J.P. Mathews, Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field, Combust. Flame 159(3)(2012)1272-1285. [25] C. Chen, X. Jiang, Molecular dynamics simulation of soot formation during diesel combustion with oxygenated fuel addition, Phys. Chem. Chem. Phys. 22(36)(2020)20829-20836. [26] Z.J. Zhang, H.Y. Zhang, J. Chai, L.A. Zhao, L. Zhuang, Reactive molecular dynamics simulation of oil shale combustion using the ReaxFF reactive force field, Energy Sources A 43(3)(2021)349-360. [27] F.J. Zheng, Z.Y. Ren, B. Xu, K. Wan, J.T. Cai, J.D. Yang, T. Zhang, P. Wang, B. Niu, Y.Y. Zhang, D.H. Long, Elucidating multiple-scale reaction behaviors of phenolic resin pyrolysis via TG-FTIR and ReaxFF molecular dynamics simulations, J. Anal. Appl. Pyrolysis 157(2021)105222. [28] X.L. Xing, X.R. Niu, Y. Liu, C.H. Yang, S.J. Wang, Y. Li, X.L. Jing, In-depth understanding on the early stage of phenolic resin thermal pyrolysis through ReaxFF-molecular dynamics simulation, Polym. Degrad. Stab. 186(2021)109534. [29] X.L. Liu, X.X. Li, J. Liu, Z. Wang, B. Kong, X.M. Gong, X.Z. Yang, W.G. Lin, L. Guo, Study of high density polyethylene (HDPE) pyrolysis with reactive molecular dynamics, Polym. Degrad. Stab. 104(2014)62-70. [30] Z.J. Chen, W.Z. Sun, L. Zhao, Combustion mechanisms and kinetics of fuel additives:A ReaxFF molecular simulation, Energy Fuels 32(11)(2018)11852-11863. [31] X.M. Cheng, Q.D. Wang, J.Q. Li, J.B. Wang, X.Y. Li, ReaxFF molecular dynamics simulations of oxidation of toluene at high temperatures, J. Phys. Chem. A 116(40)(2012)9811-9818. [32] K. Chenoweth, A.C.T. van Duin, W.A. Goddard, ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation, J. Phys. Chem. A 112(5)(2008)1040-1053. [33] R. Lustig, Direct molecularNVTsimulation of the isobaric heat capacity, speed of sound and Joule-Thomson coefficient, Mol. Simul. 37(6)(2011)457-465. [34] H.L. Yuan, W.J. Kong, F.S. Liu, D.P. Chen, Study on soot nucleation and growth from PAHs and some reactive species at flame temperatures by ReaxFF molecular dynamics, Chem. Eng. Sci. 195(2019)748-757. [35] Z.Z. Bai, X.Z. Jiang, K.H. Luo, Understanding mechanisms of pyridine oxidation with ozone addition via reactive force field molecular dynamics simulations, Chem. Eng. Sci. 266(2023)118290. [36] C.F. Wang, Y. Zhou, F.R. Huang, L. Du, Synthesis and characterization of thermooxidatively stable poly (dimethylsilyleneethynylenephenyleneethynylene) with o-carborane units, React. Funct. Polym. 71(8)(2011)899-904. [37] F. Wang, J. Zhang, J.X. Huang, H. Yan, F.R. Huang, L. Du, Synthesis and characterization of poly (dimethylsilylene ethynylenephenyleneethynylene) terminated with phenylacetylene, Polym. Bull. 56(1)(2006)19-26. [38] F.J. Zheng, K. Wan, F.R. Huang, B. Niu, Y.A. Shi, D. Wei, Y.Y. Zhang, D.H. Long, Assessing pyrolysis behavior of silicon-containing arylacetylene resin via experiments and ReaxFF MD simulations, J. Anal. Appl. Pyrolysis 164(2022)105528. [39] J.D. Zheng, Q.L. Yuan, F.X. Cui, F.R. Huang, Synthesis and characterization of silicon-containing arylacetylene ether of bisphenol a resins and their composites, IOP Conf. Ser.:Mater. Sci. Eng. 397(2018)012020. [40] C.A. Li, J.W. Luo, M.P. Ma, J.K. Tang, Q.L. Yuan, F.R. Huang, Synthesis and properties of sulfur-contained poly (silylene arylacetylene) S, J. Polym. Sci. A 57(23)(2019)2324-2332. [41] H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81(8)(1984)3684-3690. [42] S. Vyazovkin, N. Sbirrazzuoli, Isoconversional kinetic analysis of thermally stimulated processes in polymers, Macromol. Rapid Commun. 27(18)(2006)1515-1532. [43] G.R. Gao, S.Q. Zhang, L.Q. Wang, J.P. Lin, H.M. Qi, J.L. Zhu, L. Du, M. Chu, Developing highly tough, heat-resistant blend thermosets based on silicon-containing arylacetylene:A material genome approach, ACS Appl. Mater. Interfaces 12(24)(2020)27587-27597. [44] J. Malek, T. Mitsuhashi, J.M. Criado, Kinetic analysis of solid-state processes, J. Mater. Res. 16(6)(2001)1862-1871. [45] A. Bhargava, P. van Hees, B. Andersson, Pyrolysis modeling of PVC and PMMA using a distributed reactivity model, Polym. Degrad. Stab. 129(2016)199-211. [46] S.Q. Jian, Y.X. Yang, W. Ren, L.L. Xing, D.Y. Zhao, Y. Tian, T. Ding, X.G. Li, Kinetic analysis of morphologies and crystal planes of nanostructured CeO2 catalysts on soot oxidation, Chem. Eng. Sci. 226(2020)115891. [47] J.M. Cai, F.S. Yao, W.M. Yi, F. He, New temperature integral approximation for nonisothermal kinetics, AIChE J. 52(4)(2006)1554-1557. [48] S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Perez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta 520(1-2)(2011)1-19. [49] S. Li, Y. Han, F.H. Chen, Z.H. Luo, H. Li, T. Zhao, The effect of structure on thermal stability and anti-oxidation mechanism of silicone modified phenolic resin, Polym. Degrad. Stab. 124(2016)68-76. [50] H.D. Zhang, Z.Y. Yan, Z.Z. Yang, J.S. Yao, Q.H. Mu, D. Peng, H. Zhao, Study on the synthesis and thermal stability of silicone resins reinforced by Si-O-Ph cross-linking, RSC Adv. 11(49)(2021)30971-30979. |