[1] X. Zhang, L.X. Zhu, X.C. Wang, S.P. Li, H.F. Wang, Latest research progress in Zn anode of secondary Zn-air batteries, Chin. J. Nonferrous Metals 30(8)(2020)1895-1905.(in Chinese) [2] Zhao Lu, Electrochemical reaction model of zinc-air battery and research on dendrite growth inhibition, Master Thesis, Kunming University of Science and Technology, China, 2021.(in Chinese) [3] Y.J. Zheng, N. Yang, J. Li, Y.Q. Hou, G. Xie, Research status of dendrite growth simulation of Zn-air battery, Yunnan Metall. 49(3)(2020)37-43.(in Chinese) [4] A. Poosapati, K. Negrete, M. Thorpe, J. Hutchison, M. Zupan, Y.C. Lan, D. Madan, Safe and flexible chitosan-based polymer gel as an electrolyte for use in zincalkaline based chemistries, J. Appl. Polym. Sci. 138(33)(2021)138. [5] D.F. Du, S. Zhao, Z. Zhu, F.J. Li, J. Chen, Photo-excited oxygen reduction and oxygen evolution reactions enable a high-performance Zneair battery, Angew. Chem. 132(41)(2020)18297-18301. [6] R.G. Gunther, R.M. Bendert, Zinc electrode shape change in cells with controlled current distribution, J. Electrochem. Soc. 134(4)(1987)782-791. [7] J. McBreen, Zinc electrode shape change in secondary cells, J. Electrochem. Soc. 119(12)(1972)1620. [8] C. Yang, Z.J. Zhan, Z.L. Tian, Y.Q. Lai, K. Zhang, J. Li, Effects of various carboxymethyl celluloses on the electrochemical characteristics of zinc anode from an alkaline electrolyte, Electrochim. Acta 163(9)(2017)284-290. [9] L.N. Bengoa, S. Bruno, H.A. Lazzarino, P.R. Sere, W.A. Egli, Study of dendritic growth of zinc crystals on the edges of steel sheet, J. Appl. Electrochem. 44(12)(2014)1261-1269. [10] S.J. Banik, R. Akolkar, Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive, J. Electrochem. Soc. 160(11)(2013) D519-D523. [11] S.J. Banik, R. Akolkar, Suppressing dendritic growth during alkaline zinc electrodeposition using polyethylenimine additive, Electrochim. Acta 179(2015)475-481. [12] J.M. Wang, L. Zhang, C. Zhang, X. Xiao, Q.Q. Zhang, C.N. Cao, The influence of Bi3+and tetrabutylammonium bromide on the dendritic growth behavior of alkaline rechargeable Zn electrode, J. Funct. Mater. 32(1)(2001)45-47. [13] S.J. Banik, R. Akolkar, Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive, J. Electrochem. Soc. 160(11)(2013) D519-D523. [14] K.L. Wang, P.C. Pei, Z. Ma, H.C. Xu, P.C. Li, X.Z. Wang, Morphology control of zinc regeneration for zinceair fuel cell and battery, J. Power Sources 271(2014)65-75. [15] K.L. Wang, P.C. Pei, Y.C. Wang, Magnetic field improving interfacial behavior of the two-electrode system, J. Electrochem. Soc. 164(13)(2017) A3440-A3444. [16] Y.D. Liu, Q. Liu, L. Xin, Y.Z. Liu, F. Yang, E.A. Stach, J.A. Xie, Making Li-metal electrodes rechargeable by controlling the dendrite growth direction, Nat. Energy 2(7)(2017)17083. [17] M. Shapouri Ghazvini, G. Pulletikurthi, Z. Liu, A. Prowald, S. Zein El Abedin, F. Endres, Electrodeposition and stripping behavior of a zinc/polystyrene composite electrode in an ionic liquid, J. Solid State Electrochem. 19(5)(2015)1453-1461. [18] K.L. Wang, P.C. Pei, Z. Ma, H.C. Chen, H.C. Xu, D.F. Chen, X.Z. Wang, Dendrite growth in the recharging process of zinceair batteries, J. Mater. Chem. A 3(45)(2015)22648-22655. [19] E.R. White, S.B. Singer, V. Augustyn, W.A. Hubbard, M. Mecklenburg, B. Dunn, B.C. Regan, In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution, ACS Nano 6(7)(2012)6308-6317. [20] J.S. Keist, C.A. Orme, P.K. Wright, J.W. Evans, An in situ AFM study of the evolution of surface roughness for zinc electrodeposition within an imidazolium based ionic liquid electrolyte, Electrochim. Acta 152(2015)161-171. [21] L.A. Guo, A. Radisic, P.C. Searson, Kinetic Monte Carlo simulations of nucleation and growth in electrodeposition, J. Phys. Chem. B 109(50)(2005)24008-24015. [22] L.Y. Liang, Y.E. Qi, F. Xue, S. Bhattacharya, S.J. Harris, L.Q. Chen, Nonlinear phase-field model for electrode-electrolyte interface evolution, Phys. Rev. E 86(5)(2012)051609. [23] L. Chen, H.W. Zhang, L.Y. Liang, Z. Liu, Y.E. Qi, P. Lu, J. Chen, L.Q. Chen, Modulation of dendritic patterns during electrodeposition:A nonlinear phase-field model, J. Power Sources 300(2015)376-385. [24] K.L. Wang, X.T. Liu, P.C. Pei, Y. Xiao, Y.C. Wang, Guiding bubble motion of rechargeable zinc-air battery with electromagnetic force, Chem. Eng. J. 352(2018)182-187. [25] K.L. Wang, P.C. Pei, Y.C. Wang, C. Liao, W. Wang, S.W. Huang, Advanced rechargeable zinc-air battery with parameter optimization, Appl. Energy 225(2018)848-856. [26] P. Li, H.L. Wang, X.H. Tan, W. Hu, M.H. Huang, J. Shi, J.W. Chen, S. Liu, Z.C. Shi, Z. Li, Bifunctional electrocatalyst with CoN3 active sties dispersed on N-doped graphitic carbon nanosheets for ultrastable Zn-air batteries, Appl. Catal. B 316(2022)121674. [27] X.J. Zheng, X.C. Cao, Y. Zhang, K. Zeng, L. Chen, R.Z. Yang, Tunable dual cationic redox couples boost bifunctional oxygen electrocatalysis for long-term rechargeable Zn-air batteries, J. Colloid Interface Sci. 628(2022)922-930. [28] H.W. Chen, Y.J. Liu, B. Liu, M. Yang, H.M. Li, H.B. Chen, Hypercrosslinked polymer-mediated fabrication of binary metal phosphide decorated spherical carbon as an efficient and durable bifunctional electrocatalyst for rechargeable Zneair batteries, Nanoscale 14(34)(2022)12431-12436. [29] Y.N. Jo, P. Santhoshkumar, K. Prasanna, K. Vediappan, C.W. Lee, Improving selfdischarge and anti-corrosion performance of Zn-air batteries using conductive polymer-coated Zn active materials, J. Ind. Eng. Chem. 76(2019)396-402. [30] H. Jing, H. Xing, X.L. Dong, Y.S. Han, Nonlinear phase-field modeling of lithium dendritic growth during electrodeposition, J. Electrochem. Soc. 169(3)(2022)032511. [31] Y.T. He, F. Ding, L. Lin, Z.H. Wang, Z. Lü, Y.H. Zhang, Influence of interfacial concentration polarization on lithium metal electrodeposition, Acta Phys. Chim. Sin. 37(2)(2020)2009001. |