[1] S.H. Liu, C.R. Cao, W.C. Lin, C.M. Shu, Experimental and numerical simulation study of the thermal hazards of four azo compounds, J. Hazard. Mater. 365 (2019) 164-177. [2] A. Khayyami, M. Karppinen, Reversible photoswitching function in atomic/molecular-layer-deposited ZnO: Azobenzene superlattice thin films, Chem. Mater. 30 (17) (2018) 5904-5911. [3] H.B. Cheng, S.C. Zhang, J. Qi, X.J. Liang, J. Yoon, Advances in application of azobenzene as a trigger in biomedicine: Molecular design and spontaneous assembly, Adv. Mater. 33 (26) (2021) e2007290. [4] F. Parsa, M. Ghorbanloo, M.Y. Masoomi, A. Morsali, P.C. Junk, J. Wang, Ultrasound-assisted synthesis and characterization of a new metal-organic framework based on azobenzene-4, 4-dicarboxylic acid: Precursor for the fabrication of Co3O4 nano-particles, Ultrason. Sonochem. 45 (2018) 197-203. [5] R. Mogale, J. Conradie, E.H.G. Langner, Trans-cis kinetic study of azobenzene-4, 4'-dicarboxylic acid and aluminium and zirconium based azobenzene-4, 4'-dicarboxylate MOFs, Molecules 27 (4) (2022) 1370. [6] F. Stoessel, Thermal Safety of Chemical Processes. Wiley, 2008. [7] The Second Subsidiary of Supervision and Administration Department of the State Administration of Work Safety, Investigation Report on the "July 22" Special Major Sleeper Bus Combustion Accident in Xinyang, Henan Province, Beijing-Zhuhai Expressway, 2012[2023-04-10]. https://www.mem.gov.cn/gk/sgcc/tbzdsgdcbg/2012/201206/t20120627_245231.shtml. [8] S.H. Liu, W.C. Lin, H.Y. Hou, C.M. Shu, Comprehensive runaway kinetic analysis and validation of three azo compounds using calorimetric approach and simulation, J. Loss Prev. Process. Ind. 49 (2017) 970-982. [9] S.H. Liu, C.M. Shu, Advanced technology of thermal decomposition for AMBN and ABVN by DSC and VSP2, J. Therm. Anal. Calorim. 121 (1) (2015) 533-540. [10] X.R. Li, X.L. Wang, H. Koseki, Study on thermal decomposition characteristics of AIBN, J. Hazard. Mater. 159 (1) (2008) 13-18. [11] A.D. Yu, W.J. Wang, M. Hua, X.H. Pan, X.M. Liang, C.Y. Wei, C.M. Shu, J.C. Jiang, Thermal hazard analysis of 1-((cyano-1-methylethyl) azo) formamide and effect of incompatible substances on its thermal decomposition, J. Loss Prev. Process. Ind. 65 (2020) 104098. [12] D. Canakci, Synthesis, spectroscopic, thermodynamics and kinetics analysis study of novel polymers containing various azo chromophore, Sci. Rep. 10 (2020) 477. [13] B. Roduit, M. Hartmann, P. Folly, A. Sarbach, P. Brodard, R. Baltensperger, Thermal decomposition of AIBN, Part B: Simulation of SADT value based on DSC results and large scale tests according to conventional and new kinetic merging approach, Thermochim. Acta 621 (2015) 6-24. [14] H.B. Li, W.Q. Wu, X. Peng, X. Wang, X.Y. Guo, L.P. Chen, W.H. Chen, Research on the decomposition kinetics and thermal hazards of 2, 2'-azobis(2-methylpropionamidine) dihydrochloride by experimental and simulation approach, Thermochim. Acta 689 (2020) 178595. [15] N.C. Zhou, M. Hua, A.D. Yu, W.J. Wang, X.H. Pan, C.Y. Wei, J.C. Jiang, Effects of incompatible substances on thermal stability of dimethyl 2, 2’-azobis(2-methylpropionate) (AIBME) in the application process, J. Loss Prev. Process. Ind. 71 (2021) 104478. [16] H.M. Sun, S. Guo, S.N. Chen, M. Jia, S.Y. Shen, Thermal behavior and decomposition mechanism of azobenzene by using kinetic calculation method and molecular dynamics simulation method, Process. Saf. Environ. Prot. 161 (2022) 447-453. [17] M. Jia, S. Guo, S. Gao, Q.S. Wang, J.H. Sun, Thermal decomposition mechanism of diisopropyl azodicarboxylate and its thermal hazard assessment, Thermochim. Acta 688 (2020) 178601. [18] Y. Tian, D.F. Zhao, C.M. Shu, N. Roy, M. Qi, Y. Liu, Study on thermal stability and thermal decomposition mechanism of 1-((cyano-1-methylethyl) azo) formamide, Process. Saf. Environ. Prot. 155 (2021) 219-229. [19] Y. Do Kim, J.J. Lee, An investigation on thermal decomposition behavior of water-soluble azo dyes, Fibres. Polym. 24 (8) (2023) 2799-2806. [20] J. Ding, X.C. Zhang, D.F. Hu, S.L. Ye, J.C. Jiang, Model-free kinetic determination of pre-exponential factor and reaction mechanism in accelerating rate calorimetry, Thermochim. Acta 702 (2021) 178983. [21] N. Sbirrazzuoli, Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way, Thermochim. Acta 564 (2013) 59-69. [22] H.B. Li, X.Q. Zhao, W.Q. Wu, S.R. Li, L.P. Chen, W.H. Chen, Experimental research on multistep decomposition kinetics of ammonium perchlorate in the space-confined environment, J. Therm. Anal. Calorim. 147 (20) (2022) 11535-11547. [23] X.W. Yao, K.L. Xu, F. Yan, Z.Q. He, Pyrolysis Characteristics and kinetics comparison of different agricultural biomass wastes, J. Northeast Univ. (Natural Science Edition) (China) 37(11) (2016) 1593-1597. [24] W. Ng, Thermal decomposition in the solid state, Aust. J. Chem. 28 (6) (1975) 1169. [25] N. Koga, H. Tanaka, Accommodation of the actual solid-state process in the kinetic model function, J. Therm. Anal. 41 (2) (1994) 455-469. [26] S. Maitra, A.J. Pal, N. Bandyopadhyay, S. Das, J. Pal, Use of genetic algorithm to determine the kinetic model of solid-state reactions, J. Am. Ceram. Soc. 90 (5) (2007) 1611-1614. [27] R. Sanchirico, On the use of the generalized autocatalytic models: The thermal decomposition of 3, 5-dinitro-4-methylbenzoic acid, AlChE. J. 61 (4) (2015) 1300-1308. [28] P.J. Skrdla, R.T. Robertson, Dispersive kinetic models for isothermal solid-state conversions and their application to the thermal decomposition of oxacillin, Thermochim. Acta 453 (1) (2007) 14-20. [29] R.Z. Hu, Q.Z. Shi, Thermal Analysis Dynamics, Science Press, Beijing, 2008. [30] A.K. Galwey, B.F. Brown, Thermal Decomposition of Ionic Solid, Elsevier, Amsterdam, 1999. [31] J. Sestak, G. Berggren, Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures, Thermochim. Acta 3 (1) (1971) 0040603171850517. [32] N.V. Muravyev, N. Koga, D.B. Meerov, A.N. Pivkina, Kinetic analysis of overlapping multistep thermal decomposition comprising exothermic and endothermic processes: Thermolysis of ammonium dinitramide, Phys. Chem. Chem. Phys. 19 (4) (2017) 3254-3264. [33] A.M.J. Ali, Z.Y. Al-Saigh, Photodecomposition of azobenzenes, J. Chem. Technol. Biotechnol. 30 (1) (1980) 440-446. [34] Z.R. Yu, Y.L. Wang, J. Zhou, L.N. Zhou, Research progress of organic crystal defects, Chem. Ind. Eng. (China) 37(2) (2020) 19-29. [35] K.S.P. Karunadasa, C.H. Manoratne, H.M.T.G.A. Pitawala, R.M.G. Rajapakse, Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in situ high-temperature X-ray powder diffraction, J. Phys. Chem. Solids 134 (2019) 21-28. [36] Y.L. Lu, H. Mu, H.X. Hou, Z. Chen, Study of pre-melting and melting of grain boundary through crystal phase field simulation, Acta Metall. Sin. (China) 49(3) (2013) 358-364. [37] J.H. Sun, S.X. Lu, Z.H. Sun, Thermal risk assessment method of self-reactive chemical substances, China Saf. Sci. (China) 13(4) (2003) 44-47. [38] P.F. Huang, P. Ping, K. Li, H.D. Chen, Q.S. Wang, J. Wen, J.H. Sun, Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode, Appl. Energy 183 (2016) 659-673. [39] H.G. Fisher, D.D. Goetz, Determination of self-accelerating decomposition temperatures for self-reactive substances, J. Loss Prev. Process. Ind. 6 (3) (1993) 183-194. [40] N. Sbirrazzuoli, Determination of pre-exponential factor and reaction mechanism in a model-free way, Thermochim. Acta 691 (2020) 178707. |