[1] J. Li, Y. Shang, X. Qiao, H. Chen, T. Li, Y. Yu, W. Hua, A method and system for preparing isocyanate monomer, CN 109748822A, (2019). [2] C.C. Wu, X.Q. Zhao, Y.J. Wang, Effect of reduction treatment on catalytic performance of Zn-based catalyst for the alcoholysis of urea to dimethyl carbonate, Catal. Commun. 6 (10) (2005) 694-698. [3] Y.C. Song, X.S. Ding, F. Li, D.S. Zhang, X.Q. Zhao, Y.J. Wang, A novel and green synthesis of methylcyclohexane diisocyanate: Reaction properties, deactivation and regeneration of Rh/γ-Al2O3 catalyst in benzene ring selective hydrogenation, Appl. Catal. A Gen. 651 (2023) 119017. [4] R.E. Malz Jr, H. Greenfield, Hydrogenation of N-aryl carbamates to N-alicyclic carbamates, Ind. Eng. Chem. Prod. Res. Dev. 17 (4) (1978) 358-362. [5] S.H. Hu, M.W. Xue, H. Chen, J.Y. Shen, The effect of surface acidic and basic properties on the hydrogenation of aromatic rings over the supported nickel catalysts, Chem. Eng. J. 162 (1) (2010) 371-379. [6] S.H. Hu, M.W. Xue, H. Chen, J.Y. Shen, The effect of surface acidic and basic properties on the hydrogenation of aromatic rings over the supported nickel catalysts, Chem. Eng. J. 162 (1) (2010) 371-379. [7] D. Yin, Q. Xin, S. Yu, L. Jiang, L. Li, C. Xie, Q. Wu, H. Yu, Y. Liu, Y. Liu, S. Liu, Selective hydrogenation of phenol to cyclohexanone over a highly stable core-shell catalyst with Pd-lewis acid sites, J. Phys. Chem. C 125 (2021) 27241-27251. [8] S. Scire, S. Minico, C. Crisafulli, Selective hydrogenation of phenol to cyclohexanone over supported Pd and Pd-Ca catalysts: An investigation on the influence of different supports and Pd precursors, Appl. Catal. A Gen. 235 (1-2) (2002) 21-31. [9] H.Z. Liu, T. Jiang, B.X. Han, S.G. Liang, Y.X. Zhou, Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst, Science 326 (5957) (2009) 1250-1252. [10] S.D. Wang, Y.X. Wang, X.R. Wu, C.J. Hu, H.W. Zhang, Q.Y. Cui, X.J. Bao, P. Yuan, Pore-size dependent catalytic activity of supported Pd catalysts for selective hydrogenation of nitrile butadiene rubber, Chem. Eng. Sci. 273 (2023) 118629. [11] W. Jiang, J.P. Cao, C. Zhu, M. Zhao, Z.H. Ni, X.Y. Zhao, J.X. Xie, L. Zhao, Y.P. Zhao, H.C. Bai, Catalytic hydrogenation of aromatic ring over ruthenium nanoparticles supported on α-Al2O3 at room temperature, Appl. Catal. B Environ. Energy 307 (2022) 121137. [12] X.J. Cui, A.E. Surkus, K. Junge, C. Topf, J. Radnik, C. Kreyenschulte, M. Beller, Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon-nitrogen matrix, Nat. Commun. 7 (2016) 11326. [13] L.C. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles, Chem. Rev. 118 (10) (2018) 4981-5079. [14] X.M. Ren, M. Guo, H. Li, C.B. Li, L. Yu, J. Liu, Q.H. Yang, Microenvironment engineering of ruthenium nanoparticles incorporated into silica nanoreactors for enhanced hydrogenations, Angew. Chem. Int. Ed 58 (41) (2019) 14483-14488. [15] M.H. Tang, S.J. Mao, X.F. Li, C.H. Chen, M.M. Li, Y. Wang, Highly effective Ir-based catalysts for benzoic acid hydrogenation: Experiment- and theory-guided catalyst rational design, Green Chem. 19 (7) (2017) 1766-1774. [16] S.S. Chu, Z.M. Cai, M.Z. Wang, Y.P. Zheng, Y.K. Wang, Z.H. Zhou, W.Z. Weng, Sinter-resistant Rh nanoparticles supported on γ-Al2O3 nanosheets as an efficient catalyst for dry reforming of methane, Nanoscale 12 (40) (2020) 20922-20932. [17] R. Wojcieszak, M.J. Genet, P. Eloy, P. Ruiz, E.M. Gaigneaux, Determination of the size of supported Pd nanoparticles by X-ray photoelectron spectroscopy. comparison with X-ray diffraction, transmission electron microscopy, and H2 chemisorption methods, J. Phys. Chem. C 114 (39) (2010) 16677-16684. [18] J.J. Chen, H.S. Cai, T.X. Zhao, Solid-state mechanochemical synthesis of Rh/Al2O3 catalysts for effective hydrolysis of ammonia borane, Mol. Catal. 528 (2022) 112518. [19] K. Baranowska, J. Okal, Performance and stability of the Ru-Re/γ-Al2O3 catalyst in the total oxidation of propane: Influence of the order of impregnation, Catal. Lett. 146 (1) (2016) 72-81. [20] Y. Kwon, T.Y. Kim, G. Kwon, J. Yi, H. Lee, Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion, J. Am. Chem. Soc. 139 (48) (2017) 17694-17699. [21] M. Machida, Y. Uchida, Y. Ishikawa, S. Hinokuma, H. Yoshida, J. Ohyama, Y. Nagao, Y. Endo, K. Iwashina, Y. Nakahara, Thermostable Rh metal nanoparticles formed on Al2O3 by high-temperature H2 reduction and its impact on three-way catalysis, J. Phys. Chem. C 123 (40) (2019) 24584-24591. [22] M. Jablonska, TPR study and catalytic performance of noble metals modified Al2O3, TiO2 and ZrO2 for low-temperature NH3-SCO, Catal. Commun. 70 (2015) 66-71. [23] C.P. Hwang, C.T. Yeh, Q.M. Zhu, Rhodium-oxide species formed on progressive oxidation of rhodium clusters dispersed on alumina, Catal. Today 51 (1) (1999) 93-101. [24] Y.S. Chen, J. Fan, J. Deng, X. Jiang, Y. Jiao, Y.Q. Chen, Synthesis of high stability nanosized Rh/CeO2-ZrO2 three-way automotive catalysts by Rh chemical state regulation, J. Energy Inst. 93 (6) (2020) 2325-2333. [25] Q.H. Zheng, R. Farrauto, M. Deeba, I. Valsamakis, Part I: A comparative thermal aging study on the regenerability of Rh/Al2O3 and Rh/CexOy-ZrO2 as model catalysts for automotive three way catalysts, Catalysts 5 (4) (2015) 1770-1796. [26] T. Miyazawa, K. Okumura, K. Kunimori, K. Tomishige, Promotion of oxidation and reduction of Rh species by interaction of Rh and CeO2 over Rh/CeO2/SiO2, J. Phys. Chem. C 112 (7) (2008) 2574-2583. [27] P.A. Kumar, M.P. Reddy, L.K. Ju, H.H. Phil, Novel silver loaded hydroxyapatite catalyst for the selective catalytic reduction of NOx by propene, Catal. Lett. 126 (1) (2008) 78-83. [28] T. Ekou, L. Ekou, A. Vicente, G. Lafaye, S. Pronier, C. Especel, P. Marecot, Citral hydrogenation over Rh and Pt catalysts supported on TiO2: Influence of the preparation and activation protocols of the catalysts, J. Mol. Catal. A Chem. 337 (1-2) (2011) 82-88. [29] Y.L. Zhu, R.P. Wei, J.D. Fan, Y.F. Wu, S.Q. Xu, L.J. Gao, J. Zhang, G.M. Xiao, Hydrodeoxygenation of octanoic acid over supported Ni and Mo catalysts: Effect of Ni/Mo ratio and catalyst recycling, ChemistrySelect 4 (7) (2019) 2229-2236. [30] S.D. Lin, M.A. Vannice, Hydrogenation of aromatic hydrocarbons over supported Pt Catalysts.III. reaction models for metal surfaces and acidic sites on oxide supports, J. Catal. 143 (2) (1993) 563-572. [31] Y.V. Larichev, O.V. Netskina, O.V. Komova, V.I. Simagina, Comparative XPS study of Rh/Al2O3 and Rh/TiO2 as catalysts for NaBH4 hydrolysis, Int. J. Hydrog. Energy 35 (13) (2010) 6501-6507. |