[1] C. Panda, P.W. Menezes, M. Driess, Nano-sized inorganic energy-materials by the low-temperature molecular precursor approach, Angew. Chem. Int. Ed 57 (35) (2018) 11130-11139. [2] R.Y. Zheng, Z.C. Liu, Y.D. Wang, Z.K. Xie, M.Y. He, The future of green energy and chemicals: Rational design of catalysis routes, Joule 6 (6) (2022) 1148-1159. [3] C. Walter, P.W. Menezes, M. Driess, Perspective on intermetallics towards efficient electrocatalytic water-splitting, Chem. Sci. 12 (25) (2021) 8603-8631. [4] L.M. Song, S.J. Zhang, A novel cocatalyst of NiCoP significantly enhances visible-light photocatalytic hydrogen evolution over cadmium sulfide, J. Ind. Eng. Chem. 61 (2018) 197-205. [5] P.T. Babar, A.C. Lokhande, M.G. Gang, B.S. Pawar, S.M. Pawar, J.H. Kim, Thermally oxidized porous NiO as an efficient oxygen evolution reaction (OER) electrocatalyst for electrochemical water splitting application, J. Ind. Eng. Chem. 60 (2018) 493-497. [6] J.E. Kim, K.K. Bae, C.S. Park, S.U. Jeong, K.H. Baik, J.W. Kim, K.S. Kang, K.B. Lee, Y.H. Kim, Electrochemical characterization of Raney nickel electrodes prepared by atmospheric plasma spraying for alkaline water electrolysis, J. Ind. Eng. Chem. 70 (2019) 160-168. [7] L. Rossner, H. Schwarz, I. Veremchuk, R. Zerdoumi, T. Seyller, M. Armbruster, Challenging the durability of intermetallic Mo-Ni compounds in the hydrogen evolution reaction, ACS Appl. Mater. Interfaces 13 (20) (2021) 23616-23626. [8] V.N. Kuleshov, N.V. Kuleshov, S.A. Grigoriev, E.Y. Udris, P. Millet, A.S. Grigoriev, Development and characterization of new nickel coatings for application in alkaline water electrolysis, Int. J. Hydrog. Energy 41 (1) (2016) 36-45. [9] D. Pletcher, X.H. Li, S.P. Wang, A comparison of cathodes for zero gap alkaline water electrolysers for hydrogen production, Int. J. Hydrog. Energy 37 (9) (2012) 7429-7435. [10] Y.H. Yun, K. Kim, C. Lee, B.S. An, J.H. Kwon, S.C. Lee, M. Kim, J. Seo, J.H. Park, B.H. Kim, H.S. Cho, Electrochemical partial reduction of Ni(OH)2 to Ni(OH)2/Ni via coupled oxidation of an interfacing NiAl intermetallic compound for robust hydrogen evolution, J. Energy Chem. 82 (2023) 560-571. [11] Y.J. Lee, Y.S. Lee, H.A. Shin, Y.S. Jo, H. Jeong, H. Sohn, C.W. Yoon, Y. Kim, K.B. Kim, S.W. Nam, Surface area enhancement of nickel foam by low-temperature chemical alloying/dealloying and its application for sodium borohydride hydrolysis, J. Alloys Compd. 843 (2020) 155759. [12] D. Chade, L. Berlouis, D. Infield, A. Cruden, P.T. Nielsen, T. Mathiesen, Evaluation of Raney nickel electrodes prepared by atmospheric plasma spraying for alkaline water electrolysers, Int. J. Hydrog. Energy 38 (34) (2013) 14380-14390. [13] L. Wu, Y.H. He, T. Lei, B. Nan, N.P. Xu, J. Zou, B.Y. Huang, C.T. Liu, Characterization of porous Ni3Al electrode for hydrogen evolution in strong alkali solution, Mater. Chem. Phys. 141 (1) (2013) 553-561. [14] Z. Zheng, N. Li, C.Q. Wang, D.Y. Li, F.Y. Meng, Y.M. Zhu, Effects of CeO2 on the microstructure and hydrogen evolution property of Ni-Zn coatings, J. Power Sources 222 (2013) 88-91. [15] R. Mishra, Synthesis of materials by induction heating. Indian Institute of Metals Series. Springer Singapore, (2021), pp 15-228. [16] H.Y. Lee, A. Ikenaga, S.H. Kim, K.B. Kim, The effects of induction heating rate on properties of Ni-Al based intermetallic compound layer coated on ductile cast iron by combustion synthesis, Intermetallics 15 (8) (2007) 1050-1056. [17] X. Zhu, T. Zhang, D. Marchant, V. Morris, The structure and properties of NiAl formed by SHS using induction heating, Mater. Sci. Eng. A 528 (3) (2011) 1251-1260. [18] T.B. Massalski, Phase diagrams in materials science, Metall. Trans. B 20 (4) (1989) 445-473. [19] I. Bencherifa, B. Alili, T. Baudin, F. Brisset, D. Thiaudiere, C. Mocuta, D. Bradai, On the microstructure and texture of intermetallics in Al/Mg/Al multi-layer composite fabricated by Accumulative Roll Bonding, Micron 173 (2023) 103507. [20] Y. Yukselen, A. Kaya, Suitability of the methylene blue test for surface area, cation exchange capacity and swell potential determination of clayey soils, Eng. Geol. 102 (1-2) (2008) 38-45. [21] V.J.P. Vilar, C.M.S. Botelho, R.A.R. Boaventura, Methylene blue adsorption by algal biomass based materials: Biosorbents characterization and process behaviour, J. Hazard. Mater. 147 (1-2) (2007) 120-132. [22] X.G. Jiang, J.W. Song, X.B. Wang, C. Song, Y.C. Xie, T.K. Liu, C.M. Deng, M. Liu, N.N. Zhang, H.L. Liao, Improved 3D porous structures of Ni electrodes prepared by high-pressure cold spray and post annealing for water splitting, Int. J. Hydrog. Energy 47 (27) (2022) 13226-13239. [23] A. Amrouche, F. Messaoud, N. Boutarek-Zaourar, P. David, E. Mossang, S. Mansour, M. Slimane, M. Trari, Electrochemical performance of catalyst couples M/stainless steel 430 (M: Ni, Co, and Cu) for the hydrogen production in KOH electrolyte, J. Solid State Electrochem. 23 (10) (2019) 2961-2968. [24] I. Bencherifa, K. Abib, K. ABDEL YAZID, B. Alili, D. Bradai, Corrosion behavior of Al/Mg/Al multilayered composite elaborated by accumulated roll bonding, Trans. Nonferrous Met. Soc. China 34 (1) (2024) 122-138. [25] K. Derkaoui, T. Hadjersi, K. Boukhouidem, S. Bouanik, S. Naama, A. Khen, A. Manseri, L. Benharrat, M. Kechouane, M. Trari, Facile CeO2 nanoparticles deposition on Si-nanowires: Application to the rhodamine B photodegradation under visible light, React. Kinet. Mech. Catal. 136 (3) (2023) 1657-1672. [26] H.J. Miao, D.L. Piron, Composite-coating electrodes for hydrogen evolution reaction, Electrochim. Acta 38 (8) (1993) 1079-1085. |