[1] R.Z. Hu, D.C. Chen, G. Waller, Y.P. Ouyang, Y. Chen, B.T. Zhao, B. Rainwater, C.H. Yang, M. Zhu, M.L. Liu, Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: The effect of nanostructure on high initial reversible capacity, Energy Environ. Sci. 9 (2) (2016) 595-603. [2] R. Jain, A.S. Lakhnot, K. Bhimani, S. Sharma, V. Mahajani, R.A. Panchal, M. Kamble, F.D. Han, C.S. Wang, N. Koratkar, Nanostructuring versus microstructuring in battery electrodes, Nat. Rev. Mater. 7 (2022) 736-746. [3] F. Wang, B. Wang, J.X. Li, B. Wang, Y. Zhou, D.L. Wang, H.K. Liu, S.X. Dou, Prelithiation: A crucial strategy for boosting the practical application of next-generation lithium ion battery, ACS Nano 15 (2) (2021) 2197-2218. [4] Y.S. Wang, X.Q. Zhang, G.W. Wen, Dual carbon protected SnO2 with superior lithium storage performance, Appl. Surf. Sci. 531 (2020) 147331. [5] B. Li, W. Zhang, T. Zhang, S.H. Wei, W. Gao, Accurately tailoring yolk-shell spheres to balance cycling stability and volumetric capacity of lithium storage, J. Alloys Compd. 917 (2022) 165548. [6] F. Zhang, C.K. Yang, X. Gao, S. Chen, Y.R. Hu, H.Q. Guan, Y.R. Ma, J. Zhang, H.H. Zhou, L.M. Qi, SnO2@PANI core-shell nanorod arrays on 3D graphite foam: A high-performance integrated electrode for lithium-ion batteries, ACS Appl. Mater. Interfaces 9 (11) (2017) 9620-9629. [7] L.X. Yin, H.M. Li, R.L. Cheng, J. Yang, X.G. Kong, J.F. Huang, X. Wang, Controllable synthesis of SnS2 nanoflakes as high-performance anode for lithium-ion batteries, J. Mater. Sci. Mater. Electron. 32 (1) (2021) 191-203. [8] J.G. Wang, H.H. Sun, H.Y. Liu, D.D. Jin, X.R. Liu, X. Li, F.Y. Kang, Triaxial nanocables of conducting Polypyrrole@SnS2@Carbon nanofiber enabling significantly enhanced Li-ion storage, ACS Appl. Mater. Interfaces 10 (16) (2018) 13581-13587. [9] W.F. Fan, J.P. Xue, D.P. Wang, Y.X. Chen, H.B. Liu, X.H. Xia, Sandwich-structured Sn4P3@MXene hybrid anodes with high initial coulombic efficiency for high-rate lithium-ion batteries, ACS Appl. Mater. Interfaces 13 (51) (2021) 61055-61066. [10] J.D. Liu, Y.F. Chang, K. Sun, P.Q. Guo, D.L. Cao, Y.D. Ma, D.Q. Liu, Q.M. Liu, Y.J. Fu, J. Liu, D.Y. He, Sheet-like stacking SnS2/rGO heterostructures as ultrastable anodes for lithium-ion batteries, ACS Appl. Mater. Interfaces 14 (9) (2022) 11739-11749. [11] J.L. Jiang, X.F. Hu, S.Y. Lu, C. Shen, S.S. Huang, X.Y. Liu, Y. Jiang, J.J. Zhang, B. Zhao, Construction of lithophilic solid electrolyte interfaces with a bottom-up nucleation barrier difference for low-N/P ratio Li-metal batteries, Energy Storage Mater. 54 (2023) 885-894. [12] C. Shen, L.B. Hu, Q.M. Duan, X.Y. Liu, S.S. Huang, Y. Jiang, W.R. Li, B. Zhao, X.L. Sun, J.J. Zhang, Understanding lattice oxygen redox behavior in lithium-rich manganese-based layered oxides for lithium-ion and lithium-metal batteries from reaction mechanisms to regulation strategies, Adv. Energy Mater. 13 (48) (2023) 2302957. [13] J.L. Jiang, M. Li, X.Y. Liu, J. Yi, Y. Jiang, C. Wu, H.K. Liu, B. Zhao, W.R. Li, X.L. Sun, J.J. Zhang, S.X. Dou, Multifunctional additives to realize dendrite-free lithium deposition in carbonate electrolytes toward low-temperature Li metal batteries, Adv. Energy Mater. 14 (27) (2024) 2400365. [14] M. Maniyazagan, H. Zuhaib, P. Naveenkumar, H.W. Yang, W.S. Kang, S.J. Kim, Flower-like SnS2/honeycomb-like g-C3N4 composite as an anode material for high-rate, long-term lithium-ion batteries, J. Energy Storage 68 (2023) 107894. [15] C.J. He, Y.Q. Wang, W.J. Meng, J. Zhang, Y. Xie, Y.L. Hou, D.L. Zhao, Hierarchical microspheres constructed by SnS2 nanosheets and S-doped graphene for high performance lithium/sodium-ion batteries, J. Alloys Compd. 889 (2021) 161648. [16] C.P. Li, K. Pfeifer, X.L. Luo, G. Melinte, J.S. Wang, Z.F. Zhang, Y.J. Zhang, P. Dong, A. Sarapulova, H. Ehrenberg, S. Dsoke, Investigation of SnS2-rGO sandwich structures as negative electrode for sodium-ion and potassium-ion batteries, ChemSusChem 16 (7) (2023) e202202281. [17] Y. Jiang, D.Y. Song, J. Wu, Z.X. Wang, S.S. Huang, Y. Xu, Z.W. Chen, B. Zhao, J.J. Zhang, Sandwich-like SnS2/graphene/SnS2 with expanded interlayer distance as high-rate lithium/sodium-ion battery anode materials, ACS Nano 13 (8) (2019) 9100-9111. [18] A. Abbasnezhad, H. Asgharzadeh, A. Ansari Hamedani, S. Hayat Soytas, One-pot synthesis of tin chalcogenide-reduced graphene oxide-carbon nanotube nanocomposite as anode material for lithium-ion batteries, Dalton Trans. 49 (18) (2020) 5890-5897. [19] Q. Sun, D.P. Li, L.N. Dai, Z. Liang, L.J. Ci, Structural engineering of SnS2 encapsulated in carbon nanoboxes for high-performance sodium/potassium-ion batteries anodes, Small Weinheim Der Bergstrasse Ger. 16 (45) (2020) e2005023. [20] J.M. Pan, W.Q. Zhong, Z.M. Gao, X.X. Yang, Y.H. Zhang, Y. Guan, X.H. Yan, N, S-doped silicon oxycarbide-drived carbon/amorphous ball-flower-like NiO as high performance electrode in asymmetric supercapacitors, Ceram. Int. 47 (19) (2021) 27833-27842. [21] X.H. Xing, X. Wang, W.Y. Wang, C. Yang, H.Z. Wang, Hierarchically porous N-doped carbon nanosheet aerogel cathodes for Zn-ion hybrid supercapacitors with superhigh energy density, J. Energy Storage 68 (2023) 107822. [22] H.B. Zhang, Z.D. Yao, D.W. Lan, Y.Y. Liu, L.T. Ma, J.L. Cui, N-doped carbon/V2O3 microfibers as high-rate and ultralong-life cathode for rechargeable aqueous zinc-ion batteries, J. Alloys Compd. 861 (2021) 158560. [23] X.M. Sun, Y.D. Li, Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles, Angew. Chem. Int. Ed. 43 (5) (2004) 597-601. [24] F.H. Liang, H.L. Dong, J.M. Dai, H.G. He, W. Zhang, S. Chen, D. Lv, H. Liu, I.S. Kim, Y.K. Lai, Y.X. Tang, M.Z. Ge, Fast energy storage of SnS2 anode nanoconfined in hollow porous carbon nanofibers for lithium-ion batteries, Adv. Sci. Weinheim Baden Wurttemberg Ger. 11 (4) (2024) e2306711. [25] X.F. Chen, Y. Huang, K.C. Zhang, X.S. Feng, M.Y. Wang, Synthesis and high-performance of carbonaceous polypyrrole nanotubes coated with SnS2 nanosheets anode materials for lithium ion batteries, Chem. Eng. J. 330 (2017) 470-479. [26] X.Q. Chang, Y.F. Ma, M. Yang, T. Xing, L.Y. Tang, T.T. Chen, Q.B. Guo, X.H. Zhu, J.Z. Liu, H. Xia, In-situ solid-state growth of N, S codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage, Energy Storage Mater. 23 (2019) 358-366. [27] M.R. Guo, A. Qayum, S. Dong, X.L. Jiao, D.R. Chen, T. Wang, In situ conversion of metal (Ni, Co or Fe) foams into metal sulfide (Ni3S2, Co9S8 or FeS) foams with surface grown N-doped carbon nanotube arrays as efficient superaerophobic electrocatalysts for overall water splitting, J. Mater. Chem. A 8 (18) (2020) 9239-9247. [28] ZHANG C, WANG B, SHEN X, et al. A nitrogen-doped ordered mesoporous carbon/graphene framework as bifunctional electrocatalyst for oxygen reduction and evolution reactions, Nano Energy (2016) 503-510. [29] Y.D. Ren, W.M. Lv, F.S. Wen, J.Y. Xiang, Z.Y. Liu, Microwave synthesis of SnS2 nanoflakes anchored graphene foam for flexible lithium-ion battery anodes with long cycling life, Mater. Lett. 174 (2016) 24-27. [30] X.Z. Jin, H. Huang, A.M. Wu, S. Gao, M.K. Lei, J.J. Zhao, X.X. Gao, G.Z. Cao, Inverse capacity growth and pocket effect in SnS2 semifilled carbon nanotube anode, ACS Nano 12 (8) (2018) 8037-8047. [31] Lixiong Yin, Simin Chai, Jianfeng Huang, Xingang Kong, Limin Pan, Preparation of hierarchical SnS2/SnO2 anode with enhanced electrochemical performances for lithium-ion battery, Electrochimica Acta 238 (2017) 168-177. [32] R. Li, S.Q. Nie, C. Miao, Y. Xin, H.Y. Mou, G.L. Xu, W. Xiao, Heterostructural Sn/SnO2 microcube powders coated by a nitrogen-doped carbon layer as good-performance anode materials for lithium ion batteries, J. Colloid Interface Sci. 606 (Pt 2) (2022) 1042-1054. [33] Y. Xin, S. Pan, X.Z. Hu, C. Miao, S.Q. Nie, H.Y. Mou, W. Xiao, Engineering amorphous SnO2 nanoparticles integrated into porous N-doped carbon matrix as high-performance anode for lithium-ion batteries, J. Colloid Interface Sci. 639 (2023) 133-144. [34] G.L. Xu, Y.D. Gong, C. Miao, Q. Wang, S.Q. Nie, Y. Xin, M.Y. Wen, J. Liu, W. Xiao, Sn nanoparticles embedded into porous hydrogel-derived pyrolytic carbon as composite anode materials for lithium-ion batteries, Rare Met. 41 (10) (2022) 3421-3431. [35] J. Liu, Y.R. Wen, P.A. van Aken, J. Maier, Y. Yu, In situ reduction and coating of SnS2 nanobelts for free-standing SnS@polypyrrole-nanobelt/carbon-nanotube paper electrodes with superior Li-ion storage, J. Mater. Chem. A 3 (10) (2015) 5259-5265. [36] Y.Z. Zhang, Y. Meng, Y.J. Wang, L. Chen, Y. Guo, D. Xiao, Sodium carboxymethylcellulose derived oxygen-rich porous carbon anodes for high-performance lithium/sodium-ion batteries, ChemElectroChem 4 (3) (2017) 458. [37] J.D. Liu, Y.F. Chang, C. Chen, P.Q. Guo, K. Sun, D.L. Cao, Y.D. Ma, D.Q. Liu, Q.M. Liu, J. Liu, D.Y. He, Sandwich-like SnS2/graphene multilayers for efficient lithium/sodium storage, Dalton Trans. Camb. Engl. 50 (41) (2021) 14884-14890. [38] A. Glibo, N. Eshraghi, Y. Surace, A. Mautner, H. Flandorfer, D.M. Cupid, Comparative study of electrochemical properties of SnS and SnS2 as anode materials in lithium-ion batteries, Electrochim. Acta 441 (2023) 141725. [39] Y.Q. Wu, Y.S. Zhao, W.J. Meng, Y. Xie, J. Zhang, C.J. He, D.L. Zhao, Nanoplates-assembled SnS2 nanoflowers with carbon coating anchored on reduced graphene oxide for high performance Li-ion batteries, Appl. Surf. Sci. 539 (2021) 148283. [40] X.F. Chen, Y. Huang, K.C. Zhang, A-MoO3 nanorods coated with SnS2 nano sheets core-shell composite as high-performance anode materials of lithium ion batteries, Electrochim. Acta 222 (2016) 956-964. [41] J.F. Li, L. Han, Y.Q. Li, J.L. Li, G. Zhu, X.J. Zhang, T. Lu, L.K. Pan, MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries, Chem. Eng. J. 380 (2020) 122590. [42] L. Xu, X.Y. Wu, J.H. Wang, Y. Dong, D.G. Wang, R. Wang, R.G. Lv, M. Chen, Ultrafine nanocrystals SnS2 confined on the inner wall of hollow mesoporous carbon nanospheres with hybrid storage mechanism for high performance Li+/Na+ batteries, SSRN Electron. J. 9 (24) (2022) 2201057. [43] J.P. Tang, C.Y. Dai, Z. Wen, M. Yang, H.B. Gao, W.G. Mao, Z. Wang, J.N. Pan, Y. Pan, In-situ study of mechano-electrochemical coupling properties of symmetrical SnO2/Gr electrodes for lithium-ion batteries using digital image correlation, J. Energy Storage 74 (2023) 109365. [44] S. Wang, X.H. Yu, J.X. Liu, P. Dong, Y.J. Zhang, C.Y. Zhu, Z.L. Zhan, Y.N. Zhang, Encapsulation of SnO2 nanoparticles between the hollow TiO2 nanosphere and the carbon layer as high-performance negative materials for lithium-ion batteries, J. Alloys Compd. 814 (2020) 152342. [45] J.F. Yan, P.P. Xu, S.F. Chen, G. Wang, F.C. Zhang, W. Zhao, Z.Y. Zhang, Z.H. Deng, M.Z. Xu, J.N. Yun, Y.Y. Zhang, Construction of highly ordered ZnO microrod@SnO2 nanowire heterojunction hybrid with a test-tube brush-like structure for high performance lithium-ion batteries: Experimental and theoretical study, Electrochim. Acta 330 (2020) 135312. [46] Q.H. Tian, Y.B. Chen, W. Zhang, J.Z. Chen, L. Yang, Self-sacrificing template strategy to facilely prepare well-defined SnO2@C quasi-hollow nanocubes for lithium-ion battery anode, Appl. Surf. Sci. 507 (2020) 145189. [47] J. Li, M.Y. Wang, J.G. Huang, Bio-inspired hierarchical nanofibrous SnS/C composite with enhanced anodic performances in lithium-ion batteries, J. Alloys Compd. 860 (2021) 157897. [48] H. Yin, L. Jia, H.Y. Li, A. Liu, G.Y. Li, Y.C. Zhu, J.L. Huang, M.L. Cao, Z.H. Hou, Point-cavity-like carbon layer coated SnS nanotubes with improved energy storage capacity for lithium/sodium ion batteries, J. Energy Storage 65 (2023) 107354. [49] J.Y. Dai, J. Liao, M.Y. He, M.M. Yang, K.P. Wu, W.T. Yao, Si@SnS2-reduced graphene oxide composite anodes for high-capacity lithium-ion batteries, ChemSusChem 12 (23) (2019) 5062. [50] S.Y. Zhu, J.Q. Liu, J.M. Sun, Growth of ultrathin SnO2 on carbon nanotubes by atomic layer deposition and their application in lithium ion battery anodes, Appl. Surf. Sci. 484 (2019) 600-609. [51] Y. Xin, S.Q. Nie, S. Pan, C. Miao, H.Y. Mou, M.Y. Wen, W. Xiao, Electrospinning fabrication of Sb-SnSb/TiO2@CNFs composite nanofibers as high-performance anodes for lithium-ion batteries, J. Colloid Interface Sci. 630 (Pt B) (2023) 403-414. |