[1] H. Zhou, J.J. Tang, J. Guo, Y.P. Dai, G.B. Li, B. Yan, Integrated system of comprehensive utilizing the concentrated brine of Yuncheng salt-lake basing on salt-forming diagram, Chin. J. Chem. Eng. 27 (1) (2019) 182-190. [2] L.B. Tao, J.Q. Fu, F.J. Wang, Y.L. Song, Y. Li, J.W. Zhang, Z. Wang, The application of mirabilite in traditional Chinese medicine and its chemical constituents, processing methods, pharmacology, toxicology and clinical research, Front. Pharmacol. 14 (2024) 1293097. [3] R. Ikeda, A. Kyono, Temperature dependence of orientationally disordered SO4 tetrahedra in mirabilite (Na2SO4·10H2O), J. Solid State Chem. 304 (2021) 122574. [4] P. Johnson, A. Trybala, V. Starov, V.J. Pinfield, Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants, Adv. Colloid Interface Sci. 288 (2021) 102340. [5] B.Q. Lin, X. Chen, How technological progress affects input substitution and energy efficiency in China: a case of the non-ferrous metals industry, Energy 206 (2020) 118152. [6] F. Ardolino, F. Parrillo, U. Arena, Environmental performance of three innovative leather production processes using less chromium and water, Sustain. Prod. Consum. 50 (2024) 177-190. [7] H.J. Lu, J.K. Wang, J. Yu, Y.F. Wu, T. Wang, Y. Bao, D. Ma, H.X. Hao, Phase equilibria for the pseudo-ternary system (NaCl+Na2SO4 +H2O) of coal gasification wastewater at T =(268.15 to 373.15) K, Chin. J. Chem. Eng. 25 (7) (2017) 955-962. [8] L. Onsager, R.M. Fuoss, Irreversible processes in electrolytes. diffusion, conductance and viscous flow in arbitrary mixtures of strong electrolytes, J. Phys. Chem. 36 (11) (1932) 2689-2778. [9] R.J. Spencer, N. Moeller, J.H. Weare, The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-K-Ca-Mg-Cl-SO4-H2O system at temperatures below 25°C, Geochim. Cosmochim. Acta 54 (3) (1990) 575-590. [10] K.S. Pitzer, Thermodynamics of electrolytes. I. Theoretical basis and general equations, J. Phys. Chem. 77 (2) (1973) 268-277. [11] Y.L. Zhang, Y. Li, H.F. Guo, X.W. Liu, D. Xu, J.L. Cao, Solubility measurement and calculation of the quaternary system KCl-KBr-NaCl-NaBr-H2O at 323.15 K, J. Chem. Eng. Data 68 (12) (2023) 3467-3475. [12] M. Arrad, Thermodynamic modeling of lead nitrate aqueous solution: pitzer temperature dependency parameters, J. Chem. Eng. Data 64 (10) (2019) 4592-4598. [13] W. Voigt, Chemistry of salts in aqueous solutions: applications, experiments, and theory, Pure Appl. Chem. 83 (5)1015–1030. [14] I. Puigdomenech, A. Joseph, A.V. Plyasunov, I. Grenthe, Chapter X Temperature Corrections to Thermodynamic Data and Enthalpy Calculations Y, France, 1999, https://doi.org/10.3969/j.issn.1006-6152.2006.04.012. [15] K. Choudhary, B. DeCost, C. Chen, A. Jain, F. Tavazza, R. Cohn, C.W. Park, A. Choudhary, A. Agrawal, S.J.L. Billinge, E. Holm, S.P. Ong, C. Wolverton, Recent advances and applications of deep learning methods in materials science, NPJ Comput. Mater. 8 (2022) 59. [16] P. Reiser, M. Neubert, A. Eberhard, L. Torresi, C. Zhou, C. Shao, H. Metni, C. van Hoesel, H. Schopmans, T. Sommer, P. Friederich, Graph neural networks for materials science and chemistry, Commun. Mater. 3 (1) (2022) 93. [17] Z.Q. Cao, Y.D. Hu, P. Zhang, Predicting sulfate mineral scale solubility with machine learning, J. Clean. Prod. 461 (2024) 142655. [18] S. Boobier, D.R.J. Hose, A. John Blacker, B.N. Nguyen, Machine learning with physicochemical relationships: solubility prediction in organic solvents and water, Nat. Commun. 11 (1) (2020) 5753. [19] Q.C. Zhang, L.T. Yang, Z.K. Chen, P. Li, A survey on deep learning for big data, Inf. Fusion 42 (2018) 146-157. [20] A.B. Zdanovsky, E.I. Lyakhovskaya, R.E. Shleymovich., Spravochnik po rastvorimosti solevykh sistem (Handbook of the Solubility of Salt Systems), Leningrad: Goskhimizdat, 1956. (in Russian). [21] A. Smiti, A critical overview of outlier detection methods, Comput. Sci. Rev. 38 (2020) 100306. [22] J.F. Qin, Y. Yang, H.Y. Du, Z.J. Hong, Outlier detection for on-line monitoring data of transformer based on wavelet transform and weighted LOF, IOP Conf. Ser.: Earth Environ. Sci. 354 (1) (2019) 012108. [23] S. Feng, H.Y. Zhou, H.B. Dong, Using deep neural network with small dataset to predict material defects, Mater. Des. 162 (2019) 300-310. [24] W.W. Li, P. Chen, B. Xiong, G.D. Liu, S.L. Dou, Y.H. Zhan, Z.Y. Zhu, T. Chu, Y. Li, W. Ma, Deep learning modeling strategy for material science: from natural materials to metamaterials, J. Phys. Mater. 5 (1) (2022) 014003. [25] S. Liu, X.J. Liu, Q. Lyu, F.M. Li, Comprehensive system based on a DNN and LSTM for predicting sinter composition, Appl. Soft Comput. 95 (2020) 106574. [26] H. Liu, W.H. Zhang, Y.L. Song, L. Deng, S.G. Zhou, HNet-DNN: inferring new drug-disease associations with deep neural network based on heterogeneous network features, J. Chem. Inf. Model. 60 (4) (2020) 2367-2376. [27] V. Gavrishchaka, O. Senyukova, M. Koepke, Synergy of physics-based reasoning and machine learning in biomedical applications: towards unlimited deep learning with limited data, Adv. Phys. X 4 (1) (2019) 1582361. [28] C. Chen, H. Shi, Z.W. Jiang, A. Salhi, R.X. Chen, X.F. Cui, B. Yu, DNN-DTIs: Improved drug-target interactions prediction using XGBoost feature selection and deep neural network, Comput. Biol. Med. 136 (2021) 104676. [29] C. Liu, S.J. Gardner, N. Wen, M.A. Elshaikh, F. Siddiqui, B. Movsas, I.J. Chetty, Automatic segmentation of the prostate on CT images using deep neural networks (DNN), Int. J. Radiat. Oncol. Biol. Phys. 104 (4) (2019) 924-932. [30] L. Hertel, J. Collado, P. Sadowski, J. Ott, P. Baldi, Sherpa: Robust hyperparameter optimization for machine learning, SoftwareX 12 (2020) 100591. [31] J. Cao, Y.S. Ren, B.J. Yu, Q.N. Zhu, Y.J. Zhang, Solid-liquid phase equilibria of quaternary systems Na+// Cl-, CO3 2-, SO4 2- - H2O and Na+// Cl-, CO3 2-, NO3 - - H2O at T = 313.15 K, J. Chem. Thermodyn. 142 (2020) 106028. [32] P. Llompart, C. Minoletti, S. Baybekov, D. Horvath, G. Marcou, A. Varnek, Will we ever be able to accurately predict solubility? Sci. Data 11 (1) (2024) 303. [33] E. Fritschka, G. Sadowski, Rigorous modeling the pH-dependent solubility of weak acids, weak bases and their salts, Fluid Phase Equilib. 580 (2024) 114039. [34] L. Yang, A. Shami, On hyperparameter optimization of machine learning algorithms: Theory and practice, Neurocomputing 415 (2020) 295-316. [35] B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas, T. Ullmann, M. Becker, A.L. Boulesteix, D.F. Deng, M. Lindauer, Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges, Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 13 (2) (2023) e1484. [36] P. Schratz, J. Muenchow, E. Iturritxa, J. Richter, A. Brenning, Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data, Ecol. Model. 406 (2019) 109-120. |