[1] M.A. Cavaliere, M.B. Goldschmit, E.N. Dvorkin, Finite element simulation of the steel plates hot rolling process, Int. J. Numer. Meth. Eng. 52 (12) (2001) 1411-1430. [2] H.Y. Ban, G. Shi, Y.J. Shi, Y.Q. Wang, Research progress on the mechanical property of high strength structural steels, Adv. Mater. Res. 250-253 (2011) 640-648. [3] P. Simecek, D. Hajduk, Prediction of mechanical properties of hot rolled steel products, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007)1-2. [4] J. Wu, L.L. Tang, S.Q. Jin, X. Li, H. Liu, D. Li, Y.Q. Liu, Q.L. Wang, Modeling an adaptive hybrid soft sensor with co-training learning toward applications in wastewater treatment, Ind. Eng. Chem. Res. 62 (41) (2023) 16841-16853. [5] H. Kay, S. Kay, M. Mowbray, A. Lane, C. Mendoza, P. Martin, D.D. Zhang, Constructing a symbolic regression-based interpretable soft sensor for industrial data analytics and product quality control, Ind. Eng. Chem. Res. 63 (9) (2024) 4083-4092. [6] Y.K. Xie, Y.L. Deng, Y. Wang, X.B. Guo, Effect of asymmetric rolling and subsequent ageing on the microstructure, texture and mechanical properties of the Al-Cu-Li alloy, J. Alloys Compd. 836 (2020) 155445. [7] W.W. Yan, R.C. Xu, K.D. Wang, T. Di, Z. Jiang, Soft sensor modeling method based on semisupervised deep learning and its application to wastewater treatment plant, Ind. Eng. Chem. Res. 59 (10) (2020) 4589-4601. [8] F. Yan, L.Y. Kong, Y.R. Li, H.W. Zhang, C.J. Yang, L. Chai, A survey of data-driven soft sensing in ironmaking system: research status and opportunities, ACS Omega 9 (24) (2024) 25539-25554. [9] Y.Y. Yang, M. Mahfouf, D.A. Linkens, Q. Zhang, Tensile strength prediction for hot rolled steels by Bayesian neural network model, IFAC Proc. Vol. 42 (23) (2009) 255-260. [10] Z.W. Xu, X.M. Liu, K. Zhang, Mechanical properties prediction for hot rolled alloy steel using convolutional neural network, IEEE Access 7 (2019) 47068-47078. [11] I. Mohanty, R. Banerjee, A. Santara, S. Kundu, P. Mitra, Prediction of properties over the length of the coil during thermo-mechanical processing using DNN, ironmak steelmak 48 (8) (2021) 953-961. [12] G. Kostopoulos, S. Karlos, S. Kotsiantis, O. Ragos, Semi-supervised regression: a recent review, J. Intell. Fuzzy Syst. 35 (2)1483-1500. [13] Q.Q. Sun, Z.Q. Ge, Deep learning for industrial KPI prediction: when ensemble learning meets semi-supervised data, IEEE Trans. Ind. Inform. 17 (1) (2021) 260-269. [14] M.F. Abdel Hady, F. Schwenker, Semi-supervised learning. Handbook on Neural Information Processing. Springer Berlin Heidelberg, (2013), pp 15-239. [15] C.X. Jian, K.J. Yang, Y.H. Ao, Industrial fault diagnosis based on active learning and semi-supervised learning using small training set, Eng. Appl. Artif. Intell. 104 (2021) 104365. [16] X.D. Shi, W.L. Xiong, Adaptive ensemble learning strategy for semi-supervised soft sensing, J. Frankl. Inst. 357 (6) (2020) 3753-3770. [17] Z.Q. Ge, Semi-supervised data modeling and analytics in the process industry: Current research status and challenges, IFAC J. Syst. Contr. 16 (2021) 100150. [18] P. Wang, Y.C. Yin, X.G. Deng, Y.C. Bo, W.M. Shao, Semi-supervised echo state network with temporal-spatial graph regularization for dynamic soft sensor modeling of industrial processes, ISA Trans. 130 (2022) 306-315. [19] Y. Huang, C. Zhang, J. Yella, S. Petrov, X.Y. Qian, Y.F. Tang, X.Q. Zhu, S. Bom, GraSSNet: graph soft sensing neural networks, 2021 IEEE International Conference on Big Data (Big Data). December 15-18, 2021, Orlando, FL, USA. IEEE, (2021) 746-756. [20] Z.X. Song, X.L. Yang, Z.L. Xu, I. King, Graph-based semi-supervised learning: a comprehensive review, IEEE Trans. Neural Netw. Learn. Syst. 34 (11) (2023) 8174-8194. [21] J.Y. Liang, J.B. Cui, J. Wang, W. Wei, Graph-based semi-supervised learning via improving the quality of the graph dynamically, Mach. Learn. 110 (6) (2021) 1345-1388. [22] Y.W. Chong, Y. Ding, Q. Yan, S.M. Pan, Graph-based semi-supervised learning: a review, Neurocomputing 408 (2020) 216-230. [23] K.M.O. Vale, A.C. Gorgonio, F. Da Luz E Gorgonio, A.M. De Paula Canuto, An efficient approach to select instances in self-training and co-training semi-supervised methods, IEEE Access 10 (2021) 7254-7276. [24] S.W. Wu, J. Yang, G.M. Cao, Y.L. Qiu, G.G. Cheng, M.Y. Yao, J.X. Dong, Elevating prediction performance for mechanical properties of hot-rolled strips by using semi-supervised regression and deep learning, IEEE Access 8 (2020) 134124-134136. [25] J. Dong, Y.Z. Tian, K.X. Peng, Just-in-time learning-based soft sensor for mechanical properties of strip steel via multi-block weighted semisupervised models, IEEE Access 8 (2020) 123869-123881. [26] X. Ning, X.R. Wang, S.H. Xu, W.W. Cai, L.P. Zhang, L.N. Yu, W.F. Li, A review of research on co-training, Concurr. Comput. Pract. Exp. 35 (18) (2023) e6276. [27] C. Gao, J. Zhou, D.Q. Miao, J.J. Wen, X.D. Yue, Three-way decision with co-training for partially labeled data, Inf. Sci. 544 (2021) 500-518. [28] A. Rahate, R. Walambe, S. Ramanna, K. Kotecha, Multimodal co-learning: Challenges, applications with datasets, recent advances and future directions, Inf. Fusion 81 (2022) 203-239. [29] F. Min, Y. Li, L.Y. Liu, Self-paced safe co-training for regression. Advances in Knowledge Discovery and Data Mining. Springer International Publishing, (2022), pp 1-82. [30] R. Kihlman, M. Fasli, Improving the co-training algorithm to enhance semi-supervised learning results, In:2022 IEEE International Conference on Big Data (Big Data). Osaka, Japan. IEEE, (2022) 5962-5970. [31] A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training,In:Proceedings of the Eleventh Annual Conference on Computational Learning Theory. Madison Wisconsin USA. ACM, 1998. [32] J. Wang, S.W. Luo, X.H. Zeng, A random subspace method for co-training, In:2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). Hong Kong, China. IEEE, (2008) 195-200. [33] Y. Yaslan, Z. Cataltepe, Co-training with relevant random subspaces, Neurocomputing 73 (10-12) (2010) 1652-1661. [34] L.C. Zheng, Y. Cheng, H.X. Yang, N. Cao, J.R. He, Deep co-attention network for multi-view subspace learning,In:Proceedings of the Web Conference 2021, Ljubljana Slovenia. ACM, 2021. [35] W.L. Weng, W.W. Zhou, J.Z. Chen, H. Peng, H.M. Cai, Enhancing multi-view clustering through common subspace integration by considering both global similarities and local structures, Neurocomputing 378 (2020) 375-386. [36] X. C. Sheng,X. D. Yue, Novel co-training algorithm based on rough sets, Application Research of Computers,30(12)(2013)3546-3550. (in Chinese). [37] Y.L. Gong, Q.W. Wu, SIVLC: improving the performance of co-training by sufficient-irrelevant views and label consistency, Appl. Intell. 53 (18) (2023) 20710-20729. [38] J. Du, C.X. Ling, Z.H. Zhou, When does cotraining work in real data? IEEE Trans. Knowl. Data Eng. 23 (5) (2011) 788-799. [39] Z.H. Zhou, M. Li, Tri-training: exploiting unlabeled data using three classifiers, IEEE Trans. Knowl. Data Eng. 17 (11) (2005) 1529-1541. [40] A. Masmoudi, H. Bellaaj, K. Drira, M. Jmaiel, A co-training-based approach for the hierarchical multi-label classification of research papers, Expert Syst. 38 (4) (2021) e12613. [41] H.M. Zhao, J.J. Zheng, W. Deng, Y.J. Song, Semi-supervised broad learning system based on manifold regularization and broad network, IEEE Trans. Circuits Syst. I Regul. Pap. 67 (3) (2020) 983-994. [42] I. Nassar, S. Herath, E. Abbasnejad, W. Buntine, G. Haffari, All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training,In:2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA. IEEE, 2021. [43] Z.H. Zhou, M. Li, Semi-supervised regression with co-training, in: Proceedings of the 19th International Joint Conference on Artificial Intelligenc, Edinburgh, Scotland, UK,2005. [44] M.R. Amini, V. Feofanov, L. Pauletto, L. Hadjadj, E. Devijver, Y. Maximov, Self-training: a survey, (2022): 2202.12040. [45] D. Li, Y.Q. Liu, D.P. Huang, Development of semi-supervised multiple-output soft-sensors with co-training and tri-training MPLS and MRVM, Chemom. Intell. Lab. Syst. 199 (2020) 103970. [46] Q.X. Zhu, H.T. Zhang, Y. Tian, N. Zhang, Y. Xu, Y.L. He, Co-training based virtual sample generation for solving the small sample size problem in process industry, ISA Trans. 134 (2023) 290-301. [47] K.L. Li, J. Zhang, H.Y. Xu, S.Z. Luo, H.X. Li, A semi-supervised extreme learning machine method based on co-training, J. Comput. Inf. Syst. 9 (1) (2013) 207-214. [48] L. Bao, X.F. Yuan, Z.Q. Ge, Co-training partial least squares model for semi-supervised soft sensor development, Chemom. Intell. Lab. Syst. 147 (2015) 75-85. [49] Y.F. Li, D.M. Liang, Safe semi-supervised learning: a brief introduction, Front. Comput. Sci. 13 (4) (2019) 669-676. [50] Y. Gong, J. Lu, Co-training method combined with semi-supervised clustering and weighted k-nearest neighbor, Comput Eng. Appl. 55 (2019) 114-118l. [51] J. Lu, Y.L. Gong, A co-training method based on entropy and multi-criteria, Appl. Intell. 51 (6) (2021) 3212-3225. [52] Y.L. Gong, Q.W. Wu, D.D. Cheng, A co-training method based on parameter-free and single-step unlabeled data selection strategy with natural neighbors, Int. J. Mach. Learn. Cybern. 14 (8) (2023) 2887-2902. [53] G.Y. Deng, A.K. Tieu, L.H. Su, H.T. Zhu, M. Reid, Q. Zhu, C. Kong, Microstructural study and residual stress measurement of a hot rolling work roll material during isothermal oxidation, Int. J. Adv. Manuf. Technol. 102 (5) (2019) 2107-2118. [54] X. Li, R.P. Yu, P.F. Wang, R. Kang, Z.Q. Shu, Z.S. Yue, Z.Y. Zhao, X. Wang, T.J. Lu, Plastic deformation and ductile fracture of L907A ship steel at increasing strain rate and temperature, Int. J. Impact Eng. 174 (2023) 104515. [55] X.J. Sun, S.F. Yuan, Z.J. Xie, L.L. Dong, C.J. Shang, R.D.K. Misra, Microstructure-property relationship in a high strength-high toughness combination ultra-heavy gauge offshore plate steel: The significance of multiphase microstructure, Mater. Sci. Eng. A 689 (2017) 212-219. [56] M.C. Zhao, K. Yang, Y.Y. Shan, The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel, Mater. Sci. Eng. A 335 (1-2) (2002) 14-20. [57] S. Witek, A. Milenin, Numerical analysis of temperature and residual stresses in hot-rolled steel strip during cooling in coils, Arch. Civ. Mech. Eng. 18 (2) (2018) 659-668. [58] X.Y. Jiang, Z.Q. Ge, Improving the performance of just-In-time learning-based soft sensor through data augmentation, IEEE Trans. Ind. Electron. 69 (12) (2022) 13716-13726. [59] Z. Nasiri, S. Ghaemifar, M. Naghizadeh, H. Mirzadeh, Thermal mechanisms of grain refinement in steels: a review, Met. Mater. Int. 27 (7) (2021) 2078-2094. [60] A. Kabanov, G. Korpala, R. Kawalla, U. Prahl, Effect of hot rolling and cooling conditions on the microstructure, MA constituent formation, and pipeline steels mechanical properties, Steel Res. Int. 90 (6) (2019) 1800336. [61] A. Javaid, F. Czerwinski, Effect of hot rolling on microstructure and properties of the ZEK100 alloy, J. Magnes. Alloys 7 (1) (2019) 27-37. [62] L.H. Zhou, H.Y. Bi, F.L. Sui, W. Du, X.S. Fang, Influence of finish rolling temperature on microstructure and properties of hot-rolled SUS436L stainless steel, J. Mater. Eng. Perform. 32 (18) (2023) 8441-8451. [63] J. Teixeira, M. Moreno, S.Y.P. Allain, C. Oberbillig, G. Geandier, F. Bonnet, Intercritical annealing of cold-rolled ferrite-pearlite steel: Microstructure evolutions and phase transformation kinetics, Acta Mater. 212 (2021) 116920. [64] A. Oliver, A. Odena, C. Raffel, E.D. Cubuk, I.J. Goodfellow, Realistic evaluation of deep semi-supervised learning algorithms, in:Proceedings of the 32nd International Conference on Neural Information Processing System, Montreal, Canada,2018. [65] Y.F. Li, H.W. Zha, Z.H. Zhou, Learning safe prediction for semi-supervised regression, in: Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, US, 2017. [66] A. Kraskov, H. Stogbauer, P. Grassberger, Estimating mutual information, Phys. Rev. E 69 (6) (2004) 066138. [67] M. Ahmed, R. Seraj, S.M.S. Islam, The k-means algorithm: a comprehensive survey and performance evaluation, Electronics 9 (8) (2020) 1295. [68] P. Bhattacharjee, P. Mitra, A survey of density based clustering algorithms, Front. Comput. Sci. 15 (2021) 151308. [69] B.J. Frey, D. Dueck, Clustering by passing messages between data points, Science 315 (5814) (2007) 972-976. [70] H.X. Xu, Research on clustering algorithms in data mining2022 3rd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). Xi’an, China. IEEE, 2022. [71] J.M. Moreira de Lima, F.M. Ugulino de Araujo, Ensemble deep relevant learning framework for semi-supervised soft sensor modeling of industrial processes, Neurocomputing 462 (2021) 154-168. [72] Z. Li, H.P. Jin, S.L. Dong, B. Qian, B. Yang, X.G. Chen, Semi-supervised ensemble support vector regression based soft sensor for key quality variable estimation of nonlinear industrial processes with limited labeled data, Chem. Eng. Res. Des. 179 (2022) 510-526. [73] J.F. Liu, Y.Q. Chen, M.J. Liu, Z.T. Zhao, SELM: Semi-supervised ELM with application in sparse calibrated location estimation, Neurocomputing 74 (16) (2011) 2566-2572. [74] C. Shang, F. Yang, D.X. Huang, W.X. Lyu, Data-driven soft sensor development based on deep learning technique, J. Process. Contr. 24 (3) (2014) 223-233. [75] Z.L. Liao, X.L. Zhang, W. Su, K. Zhan, View-consistent heterogeneous network on graphs with few labeled nodes, IEEE Trans. Cybern. 53 (9) (2023) 5523-5532. |