[1] H. Han, Y. Liu, J. Qiao, Mechanism-data-driven multiobjective optimization for wastewater treatment process, IEEE Trans. Ind. Informat. 20 (5) (2024) 7810-7819. [2] S. Hamidoud, M. Bendjaballah, I. Kouadri, M. R. Makhlouf, Multi-objective optimization of wastewater treatment using electrocoagulation, Chin. J. Chem. Eng. 75 (2024) 152-160. [3] M. B. Aregu, Industrial wastewater treatment efficiency of mixed substrate (pumice and scoria) in horizontal subsurface flow constructed wetland: comparative experimental study design, Air, Soil Water Res. 15 (2022) 11786221211063888. [4] H. Han, Y. Zhao, X. Wu, H. Yang, Multi-timescale feature extraction method of wastewater treatment process based on adaptive entropy, Chin. J. Chem. Eng. 76 (2024) 264-271. [5] W. Wei, N. Chen, Z. Zhang, Z. Liu, M. Zuo, K. Liu, Y. Xia, A scalable-bandwidth extended state observer-based adaptive sliding-mode control for the dissolved oxygen in a wastewater treatment process, IEEE Trans. Cybern. 52 (12) (2021) 13448-13457. [6] Y. Zhang, J. Wang, C. Li, H. Duan, W. Wang, Attention-based deep learning models for predicting anomalous shock of wastewater treatment plants, Water Res. 275 (2025) 123192. [7] J. Lv, L. Du, H. Lin, B. Wang, W. Yin, Y. Song, J. Chen, J. Yang, A. Wang, H. Wang, Enhancing effluent quality prediction in wastewater treatment plants through the integration of factor analysis and machine learning, Bioresour. Technol. 393 (2024) 130008. [8] A. Elsayed, M. Ghaith, A. Yosri, Z. Li, W. El-Dakhakhni, Genetic programming expressions for effluent quality prediction: Towards ai-driven monitoring and management of wastewater treatment plants, J. Environ. Manage. 356 (2024) 120510. [9] D. Wang, S. Thunell, U. Lindberg, L. Jiang, J. Trygg, M. Tysklind, N. Souihi, A machine learning framework to improve effluent quality control in wastewater treatment plants, Sci. Total Environ. 784 (2021) 147138. [10] H. Zhang, C. Yang, X. Shi, H. Liu, Effluent quality prediction in papermaking wastewater treatment processes using dynamic bayesian networks, J. Clean. Prod. 282 (2021) 125396. [11] H. Han, M. Sun, F. Li, Z. Liu, C. Wang, Self-supervised deep clustering method for detecting abnormal data of wastewater treatment process, IEEE Trans. Ind. Informat. 20 (2) (2024) 1155-1166. [12] K. Li, L. Zhang, J. Qiao, Multi-task stochastic configuration network with autonomous linking and its application in wastewater treatment processes, Inf. Sci. 662 (2024) 120195. [13] M. A. Saleem, F. Harrou, Y. Sun, Explainable machine learning methods for predicting water treatment plant features under varying weather conditions, Results Eng. 21 (2024) 101930. [14] H. Han, M. Sun, H. Han, X. Wu, J. Qiao, Univariate imputation method for recovering missing data in wastewater treatment process, Chin. J. Chem. Eng. 53 (2023) 201-210. [15] N. Aryanti, A. Nafiunisa, T. D. Kusworo, Recent study on hydrophilization of polyvinylidene fluoride membrane for oily-wastewater treatment, Chin. J. Chem. Eng. 76 (2024) 157-186. [16] M. Bahramian, R. K. Dereli, W. Zhao, M. Giberti, E. Casey, Data to intelligence: The role of data-driven models in wastewater treatment, Expert Syst. Appl. 217 (2023) 119453. [17] S. Soni, A. Khurshid, A. M. Minase, A. Bonkinpelliwar, A tinyml approach for quantification of bod and cod in water, Proc. Int. Conf. Paradigm Shifts Commun. Embedded Syst. Mach. Learn. Signal Process. (PCEMS) 2 (2023) 1-6. [18] H. Mekaoussi, S. Heddam, N. Bouslimanni, S. Kim, M. Zounemat-Kermani, Predicting biochemical oxygen demand in wastewater treatment plant using advance extreme learning machine optimized by bat algorithm, Heliyon 9 (11) (2023) e21351. [19] J. Foschi, A. Turolla, M. Antonelli, Soft sensor predictor of e. coli concentration based on conventional monitoring parameters for wastewater disinfection control, Water Res. 191 (2021) 116806. [20] X. Shi, Q. Kang, J. An, M. Zhou, Novel l1 regularized extreme learning machine for soft-sensing of an industrial process, IEEE Trans. Ind. Informat. 18 (2) (2022) 1009-1017. [21] C. Tao, M. Jia, G. Wang, Y. Zhang, Q. Zhang, X. Wang, Q. Wang, W. Wang, Time-sensitive prediction of no2 concentration in china using an ensemble machine learning model from multi-source data, J. Environ. Sci. 137 (2024) 30-40. [22] T. Cheng, F. Harrou, F. Kadri, Y. Sun, T. Leiknes, Forecasting of wastewater treatment plant key features using deep learning-based models: A case study, IEEE Access 8 (2020) 1-11. [23] S. Heo, K. Nam, J. Loy-Benitez, C. Yoo, Data-driven hybrid model for forecasting wastewater influent loads based on multimodal and ensemble deep learning, IEEE Trans. Ind. Informat. 17 (10) (2021) 6925-6934. [24] Y. Zhang, C. Li, H. Duan, K. Yan, J. Wang, W. Wang, Deep learning based data-driven model for detecting time-delay water quality indicators of wastewater treatment plant influent, Chem. Eng. J. 467 (2023) 143483. [25] W. Zhang, J. Zhao, P. Quan, J. Wang, X. Meng, Q. Li, Prediction of influent wastewater quality based on wavelet transform and residual lstm, Appl. Soft Comput. 148 (2023) 110858. [26] J. Cao, A. Xue, Y. Yang, R. Lu, X. Hu, L. Zhang, W. Cao, G. Cao, X. Geng, L. Wang, A hybrid deep learning framework for predicting industrial wastewater influent quality based on graph optimisation, J. Water Process Eng. 65 (2024) 105831. [27] W. Cao, W. Qi, P. Lu, Air quality prediction based on time series decomposition and convolutional sparse self-attention mechanism transformer model, IEEE Access 12 (2024) 155340-155350. [28] R. Wang, Y. Qi, Q. Zhang, F. Wen, A multi-step water quality prediction model based on the savitzky-golay filter and transformer optimized network, Environ. Sci. Pollut. Res. 30 (50) (2023) 109299-109314. [29] P. Chang, S. Zhang, Z. Wang, Soft sensor of the key effluent index in the municipal wastewater treatment process based on transformer, IEEE Trans. Ind. Informat. 20 (3) (2024) 4021-4028. [30] J. Pereira, P. Oliveira, M. S. Duarte, G. Martins, P. Novais, Using deep learning models to predict the electrical conductivity of the influent in a wastewater treatment plant, 2023, pp. 130-141. [31] F. Manenti, G. V. Reklaitis, Big data analytics for advanced fault detection in wastewater treatment plants, Vol. 53 of Comput. Aided Chem. Eng., 2024, pp. 1831-1836. [32] L. Gu, J. Wang, J. Liu, A combined system based on data preprocessing and optimization algorithm for electricity load forecasting, Comput. Ind. Eng. 191 (2024) 110114. [33] M. S. Priyadarshini, M. Bajaj, L. Prokop, M. Berhanu, Perception of power quality disturbances using fourier, short-time fourier, continuous and discrete wavelet transforms, Sci. Rep. 14 (2024) 3443. [34] W. Liu, Z. Lai, K. Bacsa, E. Chatzi, Neural extended kalman filters for learning and predicting dynamics of structural systems, Struct. Health Monit. 23 (2024) 1037-1052. [35] P. Khetarpal, N. Nagpal, H. H. Alhelou, P. Siano, M. Al-Numay, Noisy and non-stationary power quality disturbance classification based on adaptive segmentation empirical wavelet transform and support vector machine, Comput. Electr. Eng. 118 (2024) 109346. [36] C. Dominguez-Monferrer, A. Guerra-Sancho, A. Caggiano, L. Nele, M. H. Miguelez, J. L. Cantero, Multiresolution analysis for tool failure detection in cfrp/ti6al4v hybrid stacks drilling in aircraft assembly lines, Mech. Syst. Signal Process. 206 (2024) 110925. [37] X. Li, A. Wang, Forest pest monitoring and early warning using uav remote sensing and computer vision techniques, Sci. Rep. 15 (1) (2025) 401. [38] D. Zhang, J. Gao, X. Li, Multivariate time series classification with crucial timestamps guidance, Expert Syst. Appl. 255 (2024) 124591. [39] Q. Yu, W. Wei, D. Li, Z. Pan, C. Li, D. Hong, Hypersinet: A synergetic interaction network combined with convolution and transformer for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens. 62 (2024) 1-18. [40] Z. Hajiabotorabi, A. Kazemi, F. Samavati, F. Ghaini, Improving dwt-rnn model via b-spline wavelet multiresolution to forecast a high-frequency time series, Expert Syst. Appl. 138 (2019) 112842. |