[1] J.L. Wang, Z. Wan, Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry, Prog. Nucl. Energy 78 (2015) 47-55. [2] P. Antonetti, Y. Claire, H. Massit, P. Lessart, C. Pham Van Cang, A. Perichaud, Pyrolysis of cobalt and caesium doped cationic ion-exchange resin, J. Anal. Appl. Pyrolysis 55 (1) (2000) 81-92. [3] C. A. Cicero-Herman, P. Workman, K. Poole, D. Erich, J. Harden, Commercial Ion Exchange Resin Vitrification in Borosilicate Glass, Office of Scientific & Technical Information Technical Reports, 1998, doi: 10.2172/594501. [4] Na Li, Xinyu Yan, Yifang Song, Wei Wang, Ping Jiang, Xianwen Huang, Guoxiong Mei, Experimental study on small strain dynamic characteristics of citric acid modified magnesium oxysulfate cement solidified engineering waste soil, Results in Engineering, Volume 27, 2025, 106633. [5] Q.N. Sun, J.L. Wang, Cementation of radioactive borate liquid waste produced in pressurized water reactors, Nucl. Eng. Des. 240 (10) (2010) 3660-3664. [6] Xiaosong Huang, Rongjun Zhang, Ziheng Wu, Junjie Zheng, Honglei Sun, Sijie Liu, Dongrui Liu, Comparison between physicochemical combined method and conventional cement solidification method for treating heavy metal-contaminated slurry-like mud, Journal of Cleaner Production, Volume 523, 2025,146460. [7] I. Plecas, A. Peric, S. Glodic, A. Kostadinovic, Comparative leaching studies of 60CO from spent radioactive ion: Exchange resin incorporated in cement, Cem. Concr. Res. 25 (2) (1995) 314-318. [8] Q.N. Sun, J. Hu, J.L. Wang, Optimization of composite admixtures used in cementation formula for radioactive evaporator concentrates, Prog. Nucl. Energy 70 (2014) 1-5. [9] Q.N. Sun, J.F. Li, J.L. Wang, Effect of borate concentration on solidification of radioactive wastes by different cements, Nucl. Eng. Des. 241 (10) (2011) 4341-4345. [10] Q.N. Sun, J.F. Li, J.L. Wang, Solidification of borate radioactive resins using sulfoaluminate cement blending with zeolite, Nucl. Eng. Des. 241 (12) (2011) 5308-5315. [11] N. Moriyama, S. Dojiri, S. Emura, T. Sugo, S. Machi, Incorporation of radioactive spent ion exchange resins in plastics, J. Nucl. Sci. Technol. 12 (6) (1975) 362-369. [12] J.F. Li, J.L. Wang, Advances in cement solidification technology for waste radioactive ion exchange resins: a review, J. Hazard. Mater. 135 (1-3) (2006) 443-448. [13] C.J. Ren, P. Zhang, Q. Song, Z.L. Huang, Y. Yang, Y.R. Yang, Particle agglomeration and inhibition method in the fluidized pyrolysis reaction of waste resin, Chin. J. Chem. Eng. 67 (2024) 135-147. [14] P. Bingham, N. Hyatt, R. Hand, Vitrification of UK intermediate level radioactive wastes arising from site decommissioning: property modelling and selection of candidate host glass compositions, Glass Technol.: Eur. J. Glass Sci. Technol. Part A 53 (2012) 83-100. [15] M.J. Quina, J.C.M. Bordado, R.M. Quinta-Ferreira, Chemical stabilization of air pollution control residues from municipal solid waste incineration, J. Hazard. Mater. 179 (1-3) (2010) 382-392. [16] S. Pettersson, G. Kemmler, Experience of resin pyrolysis, Waste Manage 84 (1984) 223. [17] A. Koolivand, H. Mazandaranizadeh, M. Binavapoor, A. Mohammadtaheri, R. Saeedi, Hazardous and industrial waste composition and associated management activities in Caspian industrial park, Iran, Environ. Nanotechnol. Monit. Manag. 7 (2017) 9-14. [18] V. Luca, H.L. Bianchi, A.C. Manzini, Cation immobilization in pyrolyzed simulated spent ion exchange resins, J. Nucl. Mater. 424 (1-3) (2012) 1-11. [19] M. Matsuda, K. Funabashi, H. Yusa, M. Kikuchi, Influence of functional sulfonic acid group on pyrolysis characteristics for cation exchange resin, J. Nucl. Sci. Technol. 24 (2) (1987) 124-128. [20] D.L. Mauzerall, B. Sultan, N. Kim, D.F. Bradford, NOx emissions from large point sources: variability in ozone production, resulting health damages and economic costs, Atmos. Environ. 39 (16) (2005) 2851-2866. [21] K. Kinoshita, M. Hirata, T. Yahata, Overall reaction rate analysis of ion-exchange resins incineration by fluidized bed, J. Nucl. Sci. Technol. 28 (8) (1991) 739-747. [22] E. Desroches-Ducarne, E. Marty, G. Martin, L. Delfosse, Co-combustion of coal and municipal solid waste in a circulating fluidized bed, Fuel 77 (12) (1998) 1311-1315. [23] C.Q. Dong, B.S. Jin, Z.P. Zhong, J.X. Lan, Tests on co-firing of municipal solid waste and coal in a circulating fluidized bed, Energy Convers. Manag. 43 (16) (2002) 2189-2199. [24] J.C. Hu, M.H. Zheng, W.B. Liu, C.L. Li, Z.Q. Nie, G.R. Liu, B. Zhang, K. Xiao, L.R. Gao, Characterization of polychlorinated naphthalenes in stack gas emissions from waste incinerators, Environ. Sci. Pollut. Res. Int. 20 (5) (2013) 2905-2911. [25] Huihuang Zou, Pinjing He, Fan Lu, Hua Zhang,Practice and challenges for beneficial use of municipal solid waste incineration bottom ash in China,Journal of Environmental Chemical Engineering,Volume 13, Issue 5,2025,117923. [26] M. Takaoka, P.Y. Liao, N. Takeda, T. Fujiwara, K. Oshita, The behavior of PCDD/Fs, PCBs, chlorobenzenes and chlorophenols in wet scrubbing system of municipal solid waste incinerator, Chemosphere 53 (2) (2003) 153-161. [27] M.X. Zhan, J.Y. Fu, T. Chen, Y.Q. Li, J. Zhang, X.D. Li, J.H. Yan, A. Buekens, Effects of bypass system on PCDD/F emission and chlorine circulation in cement kilns, Environ. Sci. Pollut. Res. 23 (19) (2016) 19657-19666. [28] F. N. Rubel, Incineration of Solid Wastes, Noyes Data Corporation, Park Ridge, New Jersey, 1974. [29] Long,. Jin, Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application, crit rev environ sci technol 42 (3) (2012) 251-325. [30] Z. Wan, L.J. Xu, J.L. Wang, Disintegration and dissolution of spent radioactive cationic exchange resins using Fenton-like oxidation process, Nucl. Eng. Des. 291 (2015) 101-108. [31] X.C. Jian, T.B. Wu, G.C. Yun, A study of wet catalytic oxidation of radioactive spent ion exchange resin by hydrogen peroxide, Nucl. Saf., (1996). [32] J.F. Li, G. Zhao, J.L. Wang, Solidification of low-level-radioactive resins in ASC-zeolite blends, Nucl. Eng. Des. 235 (7) (2005) 817-820. [33] M. Zahorodna, E. Oliveros, M. Worner, R. Bogoczek, A.M. Braun, Dissolution and mineralization of ion exchange resins: differentiation between heterogeneous and homogeneous (photo-) Fenton processes, Photochem. Photobiol. Sci. 7 (12) (2008) 1480-1492. [34] A. Akelah, D.C. Sherrington, Application of functionalized polymers in organic synthesis, Chem. Rev. 81 (6) (1981) 557-587. [35] H.C. Yang, Y.J. Cho, H.C. Eun, E.H. Kim, Destruction of chlorobenzene and carbon tetrachloride in a two-stage molten salt oxidation reactor system, Chemosphere 73 (1) (2008) S311-S315. [36] J. D. Navratil, A.E. Steward, Waste treatment using molten salt oxidation, Nukleonika 41 (1996) 57-71. [37] P. C. Hsu, D.L. Hipple, K.G. Foster, T.D. Ford, R.W. Hopper, M.G. Adamson, Molten Salt Oxidation for Treating Low-level Mixed Wastes, Lawrence Livermore National Laboratory, Livermore, CA. 1998. [38] V. Galek, J. Stoklasa, J. Hadrava, R.Vokaty, Flame-free combustion of radioactive and hazardous wastes in the salt melt, J. Nucl. Eng. Radiat. Sci. 6 (4) (2020) 041305. [39] H.C. Yang, J.S. Yun, M.J. Kang, J.H. Kim, Y. Kang, Mechanisms and kinetics of cadmium and lead capture by calcined Kaolin at high temperatures, Korean J. Chem. Eng. 18 (4) (2001) 499-505. [40] H.C. Yang, M.W. Lee, I.H. Yoon, D.Y. Chung, J.K. Moon, Scale-up and optimization of a two-stage molten salt oxidation reactor system for the treatment of cation exchange resins, Chem. Eng. Res. Des. 91 (4) (2013) 703-712. [41] U.K. Chun, K. Choi, K.H. Yang, J.K. Park, M.J. Song, Waste minimization pretreatment via pyrolysis and oxidative pyroylsis of organic ion exchange resin, Waste Manag. 18 (3) (1998) 183-196. [42] M. Matsuda, K. Funabashi, T. Nishi, H. Yusa, M. Kikuchi, Decomposition of ion exchange resins by pyrolysis, nucl technol 75 (2) (1986) 187-192. [43] M.A. Dubois, J.F. Dozol, C. Nicotra, J. Serose, C. Massiani, Pyrolysis and incineration of cationic and anionic ion-exchange resins: Identification of volatile degradation compounds, J. Anal. Appl. Pyrolysis 31 (1995) 129-140. [44] H.C. Yang, M.W. Lee, H.S. Hwang, J.K. Moon, D.Y. Chung, Study on thermal decomposition and oxidation kinetics of cation exchange resins using non-isothermal TG analysis, J. Therm. Anal. Calorim. 118 (2) (2014) 1073-1083. [45] J. Jordan, W. B. McCarthy, P. G. Zambonin, Thermochemistry, complexationm, electron and oxygen transfer in fused nitrates, in Molten Salts: Characterisation and Analysis, ed. G Mamantov, Marcel Dekker, N. Y., (1969) 575-592. |