1 Chen,L.Z.,Nguang,S.K.,Chen,X.D.,Li,X.M.,"Modeling and optimization of fed-batch fermentation processes using dynamic neural networks and genetic algorithms",Biochem.Eng.J.,22(1),51-61 (2004). 2 Trelea,I.C.,Titica,M.,Landaud,S.,Latrille,E.,Corrieu,G.,Cheruy, A.,"Predictive modeling of brewing fermentation:from knowledge-based to black-box models",Math.Comput.Simulat.,56,405-424(2001). 3 Vapnik,V.N.,Statistical Learning Theory,Wiley,New York(1998). 4 Vapnik,V.N.,The Nature of Statistical Learning Theory, Springer-Verlag,New York(2000). 5 Osuna,E.,Freund R.,Girosi,F.,"Improved training algorithm for support vector machines",In:Proceedings of IEEE NNSP'97,Principe,J.,Gile,L.,Morgan,N.,Wilson,E.,eds.,IEEE Press,New York,USA,276-285(1997). 6 Platt,J.C.,"Fast training of support vector machines using sequential minimal optimization",In:Advances in Kernel Methods-Support Vector Learning,Schölkopf,B.,Burges,C.J.C.,Smola,A.J.,eds., MIT Press,Cambridge,MA,USA,185-208(1999). 7 Keerthi,S.S.,Shevade,S.K.,Bhattacharyya,C.,"Improvements to Platt's SMO algorithm for SVM classifier design",Neural Comput.,13(3),637-649(2001). 8 Bennett,K.P.,Bredensteiner,E.J.,"Duality and geometry in SVM classifiers",In:Proceedings of the 17th International Conference on Machine Learning,Langley,P.,ed.,Morgan Kaufmann Publishers, San Francisco,CA,USA,57-64(2000). 9 Crisp,D.J.,Burges,C.J.C.,"A geometric interpretation of v-SVM classifiers",In:Advances in Neural Information Processing Systems 12,Solla,S.A.,Leen,T.K.,Müller,K.R.,eds.,MIT Press,Cambridge,MA,USA,244-251(2000). 10 Keerthi,S.S.,Shevade,S.K.,Bhattacharyya,C.,Murthy,K.R.K.,"A fast iterative nearest point algorithm for support vector machine classifier design",IEEE Trans Neural Networks,11(1),124-136 (2000). 11 Cortes,C.,Vapnik,V.,"Support vector networks",Mach.Learn.,36,1991-1996(2003). 12 Schölkopf,B.,Smola,A.J.,Williamson,R.C.,Bartlett,P.L.,"New support vector algorithms",Neural Comput.,12,1207-1245(2000). 13 Zhu,J.,Rosset,S.,Hastie,T.,Tibshirani,R.,"1-norm support vector machines",In:Advances in Neural Information Processing Systems 16,Thrun,S.,Saul,L.,Schòlkopf,B.,eds.,Neural Information Processing Systems Foundation(2003). 14 Tao,Q.,Wu,G.W.,Wang,J.,"A generalized SK algorithm for learning v-SVM classifiers",Pattern Recogn.Lett.,25(10),1165-1171 (2004). 15 Tao,Q.,Wu,G.W.,Wang,J.,"A general soft method for learning SVM classifiers with L1-norm penalty",Pattern Recogn.,41,939-948(2008). 16 Bi,J.B.,Bennett,K.P.,"A geometric approach to support vector regression",Neurocomputing,55,79-108(2003). 17 Gilbert,E.G.,"An iterative procedure for computing the minimum of a quadratic form on a convex set",SIAM J.Control,4(1),61-79 (1996). 18 Schlesinger,M.I.,Hlaváč,V.,"Ten lectures on statistical and structural pattern recognition",Kluwer Academic Publishers,Dordrecht (2002). 19 Franc,V.,Hlaváč,V.,"An iterative algorithm learning the maximal margin classifier",Pattern Recogn.,36,1985-1996(2003). 20 Mitchell,B.F.,Dem'yanov,V.F.,Malozemov,V.N.,"Finding the point of a polyhedron closet to the origin",SIAM J.Control,12,19-26(1974). |