Chinese Journal of Chemical Engineering ›› 2013, Vol. 21 ›› Issue (9): 937-952.DOI: 10.1016/S1004-9541(13)60560-1
• 综述 • 下一篇
任其龙, 邢华斌, 鲍宗必, 苏宝根, 杨启炜, 杨亦文, 张治国
收稿日期:
2013-03-17
修回日期:
2013-05-20
出版日期:
2013-09-28
发布日期:
2013-10-01
通讯作者:
REN Qilong
基金资助:
Supported by the National Natural Science Foundation of China (20936005, 21076175 and 21076178), the National High Technology Research and Development Program of China (2012AA040211), and the Program for Zhejiang Leading Team of S&T Innovation (2011R50002)
REN Qilong, XING Huabin, BAO Zongbi, SU Baogen, YANG Qiwei, YANG Yiwen, ZHANG Zhiguo
Received:
2013-03-17
Revised:
2013-05-20
Online:
2013-09-28
Published:
2013-10-01
Contact:
REN Qilong
Supported by:
Supported by the National Natural Science Foundation of China (20936005, 21076175 and 21076178), the National High Technology Research and Development Program of China (2012AA040211), and the Program for Zhejiang Leading Team of S&T Innovation (2011R50002)
摘要: Bioactive natural products are a main source of new drugs, functional foods and food additives. The separation of bioactive natural products plays an important role in transformation and use of biomass. The isolation and purification of bioactive principle from a complex matrix is often inherent bottleneck for the utilization of natural products, so a series of extraction and separation techniques have been developed. This review covers recent advances in the separation of bioactive natural products with an emphasis on their solubility and diffusion coefficients, recent extraction techniques and isolation techniques. This overview of recent technological advances, discussion of pertinent problems and prospect of current methodologies in the separation of bioactive natural products may provide a driving force for development of novel separation techniques.
任其龙, 邢华斌, 鲍宗必, 苏宝根, 杨启炜, 杨亦文, 张治国. Recent Advances in Separation of Bioactive Natural Products[J]. Chinese Journal of Chemical Engineering, 2013, 21(9): 937-952.
REN Qilong, XING Huabin, BAO Zongbi, SU Baogen, YANG Qiwei, YANG Yiwen, ZHANG Zhiguo. Recent Advances in Separation of Bioactive Natural Products[J]. Chin.J.Chem.Eng., 2013, 21(9): 937-952.
1 Sticher, O., “Natural product isolation”, Nat. Prod. Rep., 25 (3), 517-554 (2008).2 Rocha, L.G., Almeida, J., Macedo, R.O., Barbosa-Filho, J.M., “A review of natural products with antileishmanial activity”, Phytomedicine, 12 (6-7), 514-535 (2005).3 Iqbal, M., Black, R.J.G., Winn, J., Reeder, A.T., Blake, A.J., Clarke, P.A., “Studies on transannulation reactions across a nine-membered ring: The synthesis of natural product-like structures”, Org. Biomol. Chem., (9), 5062-5078 (2011).4 Xiao, M., Shao, Y.D., Yan, W.D., Zhang, Z.Z., “Measurement and correlation of solubilities of apigenin and apigenin 7-O-rhamnosylglucoside in seven solvents at different temperatures”, J. Chem. Thermodyn., 43 (3), 240-243 (2011).5 Chebil, L., Chipot, C., Archambault, F., Humeau, C., Engasser, J.M., Ghoul, M., Dehez, F., “Solubilities inferred from the combination of experiment and simulation case study of quercetin in a variety of solvents”, J. Phys. Chem. B, 114 (38), 12308-12313 (2010).6 Chebil, L., Humeau, C., Anthoni, J., Dehez, F., Engasser, J.M., Ghoul, M., “Solubility of flavonoids in organic solvents”, J. Chem. Eng. Data, 52 (5), 1552-1556 (2007).7 Liu, L.X., Chen, J., “Solubility of hesperetin in various solvents from (288.2 to 323.2) K”, J. Chem. Eng. Data, 53 (7), 1649-1650 (2008).8 Tamura, K., Li, H.D., “Mutual solubilities of terpene in methanol and water and their multicomponent liquid-liquid equilibria”, J. Chem. Eng. Data, 50 (6), 2013-2018 (2005).9 Chen, W., Su, B.G., Xing, H.B., Yang, Y.W., Ren, Q.L., “Solubility of desmosterol in five organic solvents”, J. Chem. Eng. Data, 53 (11), 2715-2717 (2008).10 Zheng, Y.L., Liu, X.S., Luan, L.J., Wang, L.H., Wu, Y.J., “Solubility of physalin D in ethanol, methanol, propanone, trichloromethane, ethyl ethanoate, and water at temperatures from (283.2 to 313.2) K E-5232-2011”, J. Chem. Eng. Data, 55 (9), 3690-3692 (2010).11 Bakhbakhi, Y., Charpentier, P., Rohani, S., “The solubility of beclomethasone-17, 21-dipropionate in selected organic solvents: Experimental measurement and thermodynamic modeling”, Org. Process Res. Dev., 13 (6), 1322-1326 (2009).12 Shareef, A., Angove, M.J., Wells, J.D., Johnson, B.B., “Aqueous solubilities of estrone, 17 beta-estradiol, 17 alpha-ethynylestradiol, and bisphenol A”, J. Chem. Eng. Data, 51 (3), 879-881 (2006).13 Lesser, S., Cermak, R., Wolffram, S., “Bioavailability of quercetin in pigs is influenced by the dietary fat content B-7379-2011”, J. Nutr., 134 (6), 1508-1511 (2004).14 Xiao, M., Yan, W.D., Zhang, Z.Z., “Solubilities of apigenin in ethanol plus water at different temperatures”, J. Chem. Eng. Data, 55 (9), 3346-3348 (2010).15 Peng, B., Yan, W.D., “Solubility of luteolin in ethanol plus water mixed solvents at different temperatures”, J. Chem. Eng. Data, 55 (1), 583-585 (2010).16 Chen, W., Su, B.G., Xing, H.B., Yang, Y.W., Ren, Q.L., “Solubilities of cholesterol and desmosterol in binary solvent mixtures of n-hexane plus ethanol”, Fluid Phase Equilibr., 287 (1), 1-6 (2009).17 Kahlen, J., Masuch, K., Leonhard, K., “Modelling cellulose solubilities in ionic liquids using COSMO-RS”, Green Chem., 12 (12), 2172-2181 (2010).18 Guo, Z., Lue, B.M., Thomasen, K., Meyer, A.S., Xu, X.B., “Predictions of flavonoid solubility in ionic liquids by COSMO-RS: Experimental verification, structural elucidation, and solvation characterization”, Green Chem., 9 (12), 1362-1373 (2007).19 Smith, K.B., Bridson, R.H., Leeke, G.A., “Solubilities of pharmaceutical compounds in ionic liquids”, J. Chem. Eng. Data, 56 (5), 2039-2043 (2011).20 Zakrzewska, M.E., Bogel-Lukasik, E., Bogel-Lukasik, R., “Solubility of carbohydrates in ionic liquids A-6315-2011”, Energ. Fuel., 24, 737-745 (2010).21 Xing, H.B., Yang, Y.W., Su, B.G., Huang, M., Ren, Q.L., “Solubility of artemisinin in supercritical carbon dioxide”, J. Chem. Eng. Data, 48 (2), 330-332 (2003).22 Talansier, E., Braga, M., Rosa, P., Paolucci-Jeanjean, D., Meireles, M., “Supercritical fluid extraction of vetiver roots: A study of SFE kinetics C-3777-2008 C-5479-2008”, J. Supercrit. Fluid., 47 (2), 200-208 (2008).23 Chen, C.C., Song, Y.H., “Solubility modeling with a nonrandom two-liquid segment activity coefficient model C-3054-2008”, Ind. Eng. Chem. Res., 43 (26), 8354-8362 (2004).24 Gracin, S., Brinck, T., Rasmuson, A.C., “Prediction of solubility of solid organic compounds in solvents by UNIFAC”, Ind. Eng. Chem. Res., 41 (20), 5114-5124 (2002).25 Lu, Y.C., Lin, Q., Luo, G.S., Dai, Y.Y., “Solubility of berberine chloride in various solvents”, J. Chem. Eng. Data, 51 (2), 642-644 (2006).26 Luo, W.P., Wang, Q.B., Fu, L.Q., Deng, W., Zhang, X.Y., Guo, C.C., “New group-interaction parameters of the UNIFAC model: Aromatic carboxyl binaries”, Ind. Eng. Chem. Res., 50 (7), 4099-4105 (2011).27 Chen, C.C., Crafts, P.A., “Correlation and prediction of drug molecule solubility in mixed solvent systems with the nonrandom two-liquid segment activity coefficient (NRTL-SAC) model C-3054-2008”, Ind. Eng. Chem. Res., 45 (13), 4816-4824 (2006).28 Klamt, A., Eckert, F., “COSMO-RS: A novel and efficient method for the a priori prediction of thermophysical data of liquids”, Fluid Phase Equilibr., 172 (1), 43-72 (2000).29 Klamt, A., Eckert, F.Hornig, M., Beck, M.E., Burger, T., “Prediction of aqueous solubility of drugs and pesticides with COSMO-RS”, J. Comput. Chem., 23 (2), 275-281 (2002).30 Lapkin, A.A., Peters, M., Greiner, L., Chemat, S., Leonhard, K., Liauw, M.A., Leitner, W., “Screening of new solvents for artemisinin extraction process using ab initio methodology A-8577-2008 B-2127-2009 A-7194-2008”, Green Chem., 12 (2), 241-251 (2010).31 Kholod, Y.A., Grynova, G., Gorb, L., Hill, F.C., Leszczynski, J., “Evaluation of the dependence of aqueous solubility of nitro compounds on temperature and salinity: A COSMO-RS simulation”, Chemosphere, 83 (3), 287-294 (2011).32 Shu, C.C., Lin, S.T., “Prediction of drug solubility in mixed solvent systems using the COSMO-SAC activity coefficient model”, Ind. Eng. Chem. Res., 50 (1), 142–147 (2011).33 Tung, H.H., Tabora, J., Variankaval, N., Bakken, D., Chen, C.C., “Prediction of pharmaceutical solubility via NRTL-SAC and COSMO-SAC”, J. Pharm. Sci., 97 (5), 1813-1820 (2008).34 Hills, E.E., Abraham, M.H., Hersey, A., Bevan, C.D., “Diffusion coefficients in ethanol and in water at 298 K: Linear free energy relationships”, Fluid Phase Equilibr., 303 (1), 45-55 (2011).35 Ma, Y.G., Zhu, C.Y., Ma, P.S., Yu, K.T., “Studies on the diffusion coefficients of amino acids in aqueous solutions”, J. Chem. Eng. Data, 50 (4), 1192-1196 (2005).36 Mogi, N., Sugai, E., Fuse, Y., Funazukuri, T., “Infinite dilution binary diffusion coefficients for six sugars at 0.1 MPa and temperatures from (273.2 to 353.2) K”, J. Chem. Eng. Data, 52 (1), 40-43 (2007).37 Funazukuri, T., Nishimoto, N., Wakao, N., “Binary diffusion-coefficients of organic-compounds in hexane, dodecane, and cyclohexane at 303.2-333.2 K and 16.0 MPa”, J. Chem. Eng. Data, 39 (4), 911-915 (1994).38 Funazukuri, T., Fukuda, Y., Nishimoto, N., Wakao, N., “Measurement of binary diffusion-coefficients of organic-compounds in n-hexane, n-dodecane and cyclohexane at 16.0 MPa”, Kag. Kog. Ronbunshu, 19 (6), 1157-1164 (1993).39 Rezaei, K.A., Temelli, F., “Using supercritical fluid chromatography to determine diffusion coefficients of lipids in supercritical CO2”, J. Supercrit. Fluids, 17 (1), 35-44 (2000).40 Funazukuri, T., Kong, C.Y., Kagei, S., “Binary diffusion coefficient, partition ratio, and partial molar volume for docosahexaenoic acid, eicosapentaenoic acid and alpha-linolenic acid at infinite dilution in supercritical carbon dioxide”, Fluid Phase Equilibr., 206, 163-178 (2003).41 Funazukuri, T., Kong, C.Y., Kikuchi, T., Kagei, S., “Measurements of binary diffusion coefficient and partition ratio at infinite dilution for linoleic acid and arachidonic acid in supercritical carbon dioxide”, J. Chem. Eng. Data, 48 (3), 684-688 (2003).42 Funazukuri, T., Kong, C.Y., Kagei, S., “Effects of molecular weight and degree of unsaturation on binary diffusion coefficients for lipids in supercritical carbon dioxide”, Fluid Phase Equilibr., 219 (1), 67-73 (2004).43 Kong, C.Y., Withanage, N., Funazukuri, T., Kagei, S., “Binary diffusion coefficients and retention factors for long-chain triglycerides in supercritical carbon dioxide by the chromatographic impulse response method”, J. Chem. Eng. Data, 50 (5), 1635-1640 (2005).44 Kong, C.Y., Withanage, N., Funazukuri, T., Kagei, S., “Binary diffusion coefficients and retention factors for gamma-linolenic acid and its methyl and ethyl esters in supercritical carbon dioxide”, J. Supercrit. Fluids, 37 (1), 63-71 (2006).45 Han, Y.S., Yang, Y.W., Wu, P.D., “Binary diffusion coefficients of arachidonic acid ethyl esthers, cis-5,8,11,14,17-eicosapentaenoic acid ethyl esthers, and cis-4,7,10,13,16,19-docosahexanenoic acid ethyl esthers in supercritical carbon dioxide”, J. Chem. Eng. Data, 52 (2), 555-559 (2007).46 Kong, C.Y., Mori, M., Funazukuri, T., Kagei, S., “Measurements of binary diffusion coefficients, retention factors and partial molar volumes for myristoleic acid and its methyl ester in supercritical carbon dioxide”, Anal. Sci., 11 (22), 1431-1436 (2006).47 Scott, A., Smith, V.S.M.A., “Diffusion in supercritical mixtures: CO2?+?cosolvent?+?solutes”, J. Supercrit. Fluids, (3), 175-179 (1990).48 Suarez-Iglesias, O., Medina, I., Pizarro, C., Bueno, J.L., “Diffusion of benzyl acetate, 2-phenylethyl acetate, 3-phenylpropyl acetate, and dibenzyl ether in mixtures of carbon dioxide and ethanol”, Ind. Eng. Chem. Res., 46 (11), 3810-3819 (2007).49 Filho, C.A., Silva, C.M., Quadri, M.B., Macedo, E.A., “Tracer diffusion coefficients of citral and D-limonene in supercritical carbon dioxide”, Fluid Phase Equilibr., 204 (1), 65-73 (2003).50 Silva, C.M., Filho, C.A., Quadri, M.B., Macedo, E.A., “Binary diffusion coefficients of alpha-pinene and beta-pinene in supercritical carbon dioxide”, J. Supercrit. Fluids, 32, 167-175 (2004).51 Dong, X.Y., Su, B.G., Xing, H.B., Yang, Y.W., Ren, Q.L., “Diffusion coefficients of L-menthone and L-carvone in mixtures of carbon dioxide and ethanol”, J. Supercrit. Fluids, 55 (1), 86-95 (2010).52 Filho, C.A., Silva, C.M., Quadri, M.B., Macedo, E.A., “Infinite dilution diffusion coefficients of linalool and benzene in supercritical carbon dioxide”, J. Chem. Eng. Data, 47 (6), 1351-1354 (2002).53 Funazukuri, T., Kong, C.Y., Murooka, N., Kagei, S., “Measurements of binary diffusion coefficients and partition ratios for acetone, phenol, alpha-tocopherol, and beta-carotene in supercritical carbon dioxide with a poly(ethylene glycol)-coated capillary column”, Ind. Eng. Chem. Res., 39 (12), 4462-4469 (2000).54 Mantell, C., Rodriguez, M., Ossa, E.M., “Measurement of the diffusion coefficient of a model food dye (malvidin 3,5-diglucoside) in a high pressure CO2 plus methanol system by the chromatographic peak-broadening technique”, J. Supercrit. Fluids, 25 (1), 57-68 (2003).55 Funazukuri, T., Kong, C.Y., Kagei, S., “Infinite-dilution binary diffusion coefficient, partition ratio, and partial molar volume for ubiquinone CoQ10 in supercritical carbon dioxide”, Ind. Eng. Chem. Res., 41 (11), 2812-2818 (2002).56 Funazukuri, T., Ishiwata, Y., “Diffusion coefficients of linoleic acid methyl ester, vitamin K3 and indole in mixtures of carbon dioxide and n-hexane at 313.2 K, and 16.0 MPa and 25.0 MPa”, Fluid Phase Equilibr., 164 (1), 117-129 (1999).57 Funazukuri, T., Ishiwata, Y.,Wakao, N., “Molecular-diffusion coefficients of vitamin-K3 in mixtures of CO2 and normal-hexane at temperature of 313.2 K and total pressure of 16.0 MPa”, J. Chem. Eng. Jpn, 24 (3), 387-388 (1991).58 Dong, X.Y., Su, B.G., Xing, H.B., Bao, Z.B., Yang, Y.W., Ren, Q.L., “Cosolvent effects on the diffusions of 1,3-dichlorobenzene, L-carvone, geraniol and 3-fluorophenol in supercritical carbon dioxide”, J. Supercrit. Fluids, 58 (2), 216-225 (2011).59 Gasik, A., Mitek, M., Kalisz, S., “Impact of the maceration process and storage conditions on the antioxidant capacity and content of some selected components in the cornelian cherry juice”, Zywn-Nauk Technol. Ja., 15 (5), 161-167 (2008).60 Puertolas, E., Saldana, G., Alvarez, I., Raso, J., “Experimental design approach for the evaluation of anthocyanin content of rose wines obtained by pulsed electric fields. Influence of temperature and time of maceration”, Food Chem., 126 (3), 1482-1487 (2011).61 Dobreva, A., Kovatcheva, N., Astatkie, T., Zheljazkov, V.D., “Improvement of essential oil yield of oil-bearing (Rosa damascena Mill.) due to surfactant and maceration”, Ind. Crop. Prod., 34 (3), 1649-1651 (2011).62 Romero-Cascales, I., Ros-Garcia, J.M., Lopez-Roca, J.M., Gomez-Plaza, E., “The effect of a commercial pectolytic enzyme on grape skin cell wall degradation and colour evolution during the maceration process”, Food Chem., 130 (3), 626-631 (2012).63 Ranalli, A., De Mattia, G., Ferrante, M.L., “The characteristics of percolation olive oils produced with a new processing enzyme aid”, Int. J. Food Sci. Tech., 33 (3), 247-258 (1998).64 Blumberg, S., Frank, O., Hofmann, T., “Quantitative studies on the influence of the bean roasting parameters and hot water percolation on the concentrations of bitter compounds in coffee brew”, J. Agr. Food Chem., 58 (6), 3720-3728 (2010).65 Yi, Y.N., Yang, H., Zhao, Y., Bai, Z.G., “Extracting flavonoids from Choerospondias axillaris by percolation”, China Journal of Chinese Materia Medica, 35 (14), 1806-1808 (2010). (in Chinese)66 Kim, K.H., Tucker, M.P., Nguyen, Q.A., “Effects of operating parameters on countercurrent extraction of hemicellulosic sugars from pretreated softwood”, Appl. Biochem. Biotech., 98, 147-159 (2002).67 Li, H.B., Chen, F., “Simultaneous separation and purification of five bioactive coumarins from the Chinese medicinal plant Cnidium monnieri by high-speed countercurrent chromatography”, J. Sep. Sci., 28 (3), 268-272 (2005).68 Kassing, M., Jenelten, U., Schenk, J., Strube, J., “A new approach for process development of plant-based extraction processes”, Chem. Eng. Technol., 33 (3), 377-387 (2010).69 Yoon, K.D., Chin, Y.W., Yang, M.H., Kim, J., “Separation of anti-ulcer flavonoids from Artemisia extracts by high-speed countercurrent chromatography”, Food Chem., 129 (2), 679-683 (2011).70 Regalado, E.L., Tolle, S., Pino, J.A., Winterhalter, P., Menendez, R., Morales, A.R., Rodriguez, J.L., “Isolation and identification of phenolic compounds from rum aged in oak barrels by high-speed countercurrent chromatography/high-performance liquid chromatography-diode array detection-electrospray ionization mass spectrometry and screening for antioxidant activity”, J. Chromatogr. A, 1218 (41), 7358-7364 (2011).71 Fang, L., Liu, Y.Q., Yang, B., Wang, X., Huang, L.Q., “Separation of alkaloids from herbs using high-speed counter-current chromatography”, J. Sep. Sci., 34 (19), 2545-2558 (2011).72 Ito, Y., “Spiral column configuration for protein separation by high-speed countercurrent chromatography”, Chem. Eng. Process., 49 (7SI), 782-792 (2010). (in Chinese)73 Wang, Q.E., Ma, S.M., Fu, B.Q., Lee, F., Wang, X.R., “Development of multi-stage countercurrent extraction technology for the extraction of glycyrrhizic acid (GA) from licorice (Glycyrrhiza uralensis Fisch)”, J. Biochem. Eng., 21 (3), 285-292 (2004).74 Wang, L.J., Weller, C.L., “Recent advances in extraction of nutraceuticals from plants”, Trends Food Sci. Tech., 17 (6), 300-312 (2006).75 Lu, S.P., Sun, Q., Wang, J.H., Sun, B.Q., “Survey of study on the extraction, purification and determination methods of glycyrrhizic acid in licorice”, China Journal of Chinese Materia Medica, 31 (5), 357-360 (2006). (in Chinese)76 Alupului, A., Calinescu, I., Lavric, V., “Ultrasonic vs. microwave extraction intensification of active principles from medicinal plants”, Chem. Eng. Trans., 17, 1023-1028 (2009).77 Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A., Fernandez-Gutierrez, A., “Phenolic-compound-extraction systems for fruit and vegetable samples”, Molecules, 15 (12), 8813-8826 (2010).78 Li, W., Zheng, C., Zhao, J., Ning, Z.X., “Microwave assisted multi-stage countercurrent extraction of dihydromyricetin from Ampelopsis grossedentata”, Int. J. Food Eng., 7 (4), DOI: 10.2202/1556-3758.2173 (2011).79 Kaufmann, B., Christen, P., “Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction”, Phytochem. Analysis, 13 (2), 105-113 (2002).80 Gonzalez-Nunez, L.N., Canizares-Macias, M.P., “Focused microwaves-assisted extraction of theobromine and caffeine from cacao”, Food Chem., 129 (4), 1819-1824 (2011).81 Ma, C.H., Liu, T.T., Yang, L., Zu, Y.G., Chen, X.Q., Zhang, L., Zhang, Y., Zhao, C.J., “Ionic liquid-based microwave-assisted extraction of essential oil and biphenyl cyclooctene lignans from Schisandra chinensis Baill fruits”, J. Chromatogr. A, 1218 (48), 8573-8580 (2011).82 Liu, T.T., Sui, X.Y., Zhang, R.R., Yang, L., Zu, Y.G., Zhang, L., Zhang, Y., Zhang, Z.H., “Application of ionic liquids based microwave-assisted simultaneous extraction of carnosic acid, rosmarinic acid and essential oil from Rosmarinus officinalis”, J. Chromatogr. A, 1218 (47), 8480-8489 (2011).83 Li, H.Y., Deng, Z.Y., Wu, T., Liu, R.H., Loewen, S., Tsao, R., “Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes”, Food Chem., 130 (4), 928-936 (2012).84 Upadhyay, R., Ramalakshmi, K., Rao, L.J.M., “Microwave-assisted extraction of chlorogenic acids from green coffee beans”, Food Chem., 130 (1), 184-188 (2012).85 Teng, H., Ghafoor, K., Choi, Y.H., “Optimization of microwave-assisted extraction of active components from Chinese Quince using response surface methodology”, J. Korean Soc. Appl. Bi., 52 (6), 694-701 (2009).86 Li, T., Qu, X.Y., Zhang, Q.A., Wang, Z.Z., “Ultrasound-assisted extraction and profile characteristics of seed oil from Isatis indigotica fort”, Ind. Crop. Prod., 35 (1), 98-104 (2012).87 Li, M.F., Sun, S.N., Xu, F., Sun, R.C., “Ultrasound-enhanced extraction of lignin from bamboo (Neosinocalamus affinis): Characterization of the ethanol-soluble fractions”, Ultrason. Sonochem., 19 (2), 243-249 (2012).88 Pan, Z.L., Qu, W.J., Ma, H.L., Atungulu, G.G., Mchugh, T.H., “Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel”, Ultrason. Sonochem., 19 (2), 365-372 (2012).89 Schinor, E.C., Salvador, M.J., Turatti, I., Zucchi, O., Dias, D.A., “Comparison of classical andultrasound-assisted extractions of steroids and triterpenoids from three Chresta spp”, Ultrason. Sonochem., 11 (6), 415-421 (2004).90 Karki, B., Lamsal, B.P., Jung, S., van Leeuwen, J., Pometto, A.L., Grewell, D., Khanal, S.K., “Enhancing protein and sugar release from defatted soy flakes using ultrasound technology”, J. Food Eng., 96 (2), 270-278 (2010).91 Pereira, C.G., Meireles, M.A.A., “Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives”, Food Bioprocess Tech., 3 (3), 340-372 (2010).92 Liza, M.S., Rahman, R.A., Mandana, B., Jinap, S., Rahmat, A., Zaidul, I.S.M., Hamid, A., “Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes crispus (Pecah Kaca)”, Food Bioprod. Process., 88 (C2-3), 319-326 (2010).93 Serra, A.T., Seabra, I.J., Braga, M.E.M., Bronze, M.R., de Sousa, H.C., Duarte, C.M.M., “Processing cherries (Prunus avium) using supercritical fluid technology. Part 1: Recovery of extract fractions rich in bioactive compounds”, J. Supercrit. Fluid., 55 (1), 184-191 (2010).94 Babovic, N.V., Petrovic, S.D., “Obtaining of the antioxidants by supercritical fluid extraction”, Hem. Ind., 65 (1), 79-86 (2011).95 Ganan, N., Brignole, E.A., “Fractionation of essential oils with biocidal activity using supercritical CO2-experiments and modeling”, J. Supercrit. Fluid., 58 (1), 58-67 (2011).96 Vidovic, S., Mujic, I., Zekovic, Z., Lepojevic, Z., Milosevic, S., Jokic, S., “Extraction of fatty acids from boletus edulis by subcritical and supercritical carbon dioxide”, J. Am. Oil Chem. Soc., 88 (8), 1189-1196 (2011).97 Langa, E., Cacho, J., Palavra, A., Burillo, J., Mainar, A.M., Urieta, J.S., “The evolution of hyssop oil composition in the supercritical extraction curve modelling of the oil extraction process”, J. Supercrit. Fluid., 49 (1), 37-44 (2009).98 Li, J.L., Zhang, M., Zheng, T.S., “The in vitro antioxidant activity of lotus germ oil from supercritical fluid carbon dioxide extraction”, Food Chem., 115 (3), 939-944 (2009).99 Upadhyay, N.K., Kumar, R., Mandotra, S.K., Meena, R.N., Siddiqui, M.S., Sawhney, R.C., Gupta, A., “Safety and healing efficacy of sea buckthorn (Hippophae rhamnoides L.) seed oil on burn wounds in rats”, Food Chem. Toxicol., 47 (6), 1146-1153 (2009).100 Chan, K.W., Ismail, M., “Supercritical carbon dioxide fluid extraction of Hibiscus cannabinus L. seed oil: A potential solvent-free and high antioxidative edible oil”, Food Chem., 114 (3), 970-975 (2009).101 Amiguet, V.T., Kramp, K.L., Mao, J.Q., Mcrae, C., Goulah, A., Kimpe, L.E., Blais, J.M., Arnason, J.T., “Supercritical carbon dioxide extraction of polyunsaturated fatty acids from northern shrimp (Pandalus borealis Kreyer) processing by-products”, Food Chem., 130 (4), 853-858 (2012).102 Tello, J., Viguera, M., Calvo, L., “Extraction of caffeine from robusta coffee (Coffea canephora var. robusta) husks using supercritical carbon dioxide”, J. Supercrit. Fluid., 59, 53-60 (2011).103 Iheozor-Ejidor, P., Dey, E.S., “Extraction of rosavin from Rhodiola rosea root using supercritical carbon dioxide with water”, J. Supercrit. Fluid., 50 (1), 29-32 (2009).104 Yang, Z.N., Luo, S.Q., Peng, Q.C., Zhao, C., Yu, Z.W., “GC-MS analysis of the essential oil of coral ginger (Zingiber corallinum hance) rrhizome obtained by supercritical fluid extraction and steam distillation extraction”, Chromatogr., 69, 785-790 (2009).105 Zarena, A.S., Sankar, K.U., “Supercritical carbon dioxide extraction of xanthones with antioxidant activity from garcinia mangostana: Characterization by HPLC/LC-ESI-MS”, J. Supercrit. Fluid., 49 (3), 330-337 (2009).106 Yesil-Celiktas, O., Otto, F., Parlar, H., “A comparative study of flavonoid contents and antioxidant activities of supercritical CO2 extracted pine barks grown in different regions of Turkey and Germany”, Eur. Food Res. Technol., 229, 671 (2009).107 Park, H.S., Im, N.G., Kim, K.H., “Extraction behaviors of caffeine and chlorophylls in supercritical decaffeination of green tea leaves”, Lwt-Food Sci. Technol., 45 (1), 73-78 (2012).108 Tzeng, T.C., Lin, Y.L., Jong, T.T., Chang, C., “Ethanol modified supercritical fluids extraction of scopoletin and artemisinin from Artemisia annua L.”, Sep. Purif. Technol., 56 (1), 18-24 (2007).109 Shi, J., Nawaz, H., Pohorly, J., Mittal, G., Kakuda, Y., Jiang, Y.M., “Extraction of polyphenolics from plant material for functional foods-Engineering and technology”, Food Res. Int., 21 (1), 139-166 (2005).110 Mohamed, R.S., Saldana, M., Socantaype, F.H., Kieckbusch, T.G., “Reduction in the cholesterol content of butter oil using supercritical ethane extraction and adsorption on alumina”, J. Supercrit. Fluid., 16 (3), 225-233 (2000).111 Huang, K.J., Wu, J.J., Chiu, Y.H., Lai, C.Y., Chang, C., “Designed polar cosolvent-modified supercritical CO2 removing caffeine from and retaining catechins in green tea powder using response surface methodology”, J. Agr. Food Chem., 55 (22), 9014-9020 (2007).112 De Azevedo, A., Kieckbush, T.G., Tashima, A.K., Mohamed, R.S., Mazzafera, P., de Melo, S., “Extraction of green coffee oil using supercritical carbon dioxide”, J. Supercrit. Fluid., 44 (2), 186-192 (2008).113 Icen, H., Guru, M., “Extraction of caffeine from tea stalk and fiber wastes using supercritical carbon dioxide”, J. Supercrit. Fluid., 50 (3), 225-228 (2009).114 Tang, W.Q., Li, D.C., Lv, Y.X., Jiang, J.G., “Extraction and removal of caffeine from green tea by ultrasonic-enhanced supercritical fluid”, J. Food Sci., 75 (4), C363-C368 (2010).115 Icen, H., Guru, M., “Effect of ethanol content on supercritical carbon dioxide extraction of caffeine from tea stalk and fiber wastes”, J. Supercrit. Fluid., 55 (1), 156-160 (2010).116 Del Valle, J.M., Rivera, O., Teuber, O., Palma, M.T., “Supercritical CO2 extraction of Chilean hop (Humulus lupulus) ecotypes”, J. Sci. Food Agr., 83 (13), 1349-1356 (2003).117 Brunner, G., “Supercritical fluids: Technology and application to food processing”, J. Food Eng., 67, 21-33 (2005).118 Roj, E., Skowronski, B., “Modeling of hop extraction under supercritical conditions”, Przem. Chem., 85 (8-9Part 2), 1140-1141 (2006).119 Zekovic, Z., Pfaf-Sovljanski, I., Grujic, O., “Supercritical fluid extraction of hops”, J. Serb. Chem. Soc., 72 (1), 81-87 (2007).120 Fischer, M., Jefferies, T.M., “Optimization of nicotine extraction from tobacco using supercritical fluid technology with dynamic extraction modeling”, J. Agr. Food Chem., 44 (5), 1258-1264 (1996).121 Pilorz, K., Bjorklund, E., Bowadt, S., Mathiasson, L., Hawthorne, S.B., “Determining PCB sorption desorption behavior on sediments using selective supercritical fluid ertraction. 1. Describing PCB extraction with simple diffusion models”, Environ. Sci. Technol., 33 (13), 2204-2212 (1999).122 Reverchon, E., Donsi, G., Osseo, L.S., “Modeling of supercritical-fluid extraction from herbaceous matrices”, Ind. Eng. Chem. Res., 32 (11), 2721-2726 (1993).123 Kim, K.H., Hong, J., “A mass transfer model for super- and near-critical CO2 extraction of spearmint leaf oil”, Sep. Sci. Technol., 37 (10), 2271-2288 (2002).124 Poletto, M., Reverchon, E., “Comparison of models for supercritical fluid extraction of seed and essential oils in relation to the mass- transfer rate”, Ind. Eng. Chem. Res., 35 (10), 3680-3686 (1996).125 Bartle, K.D., Clifford, A.A., Hawthorne, S.B., Langenfeld, J.J., Miller, D.J., Robinson, R., “A model for dynamic extraction using a supercritical fluid”, J. Supercrit. Fluid., 3 (3), 143-149 (1990).126 Herrero, M., Cifuentes, A., Ibanez, E., “Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae - A review”, Food Chem., 98 (1), 136-148 (2006).127 Ibanez, E., Kubatova, A., Senorans, F.J., Cavero, S., Reglero, G., Hawthorne, S.B., “Subcritical water extraction of antioxidant compounds from rosemary plants”, J. Agr. Food Chem., 51 (2), 375-382 (2003).128 Sereewatthanawut, I., Prapintip, S., Watchiraruji, K., Goto, M., Sasaki, M., Shotipruk, A., “Extraction ofprotein and amino acids from deoiled rice bran by subcritical water hydrolysis”, Bioresource Technol., 99 (3), 555-561 (2008).129 Wiboonsirikul, J., Hata, S., Tsuno, T., Kimura, Y., Adachi, S., “Production of functional substances from black rice bran by its treatment in subcritical water”, Lwt-Food Sci. Technol., 40 (10), 1732-1740 (2007).130 Welton, T., “Room-temperature ionic liquids. solvents for synthesis and catalysis”, Chem. Rev., 99 (8), 2071-2083 (1999).131 Giernoth, R., “Task-specific ionic liquids”, Angew. Chem. Int. Edit., 49 (16), 2834-2839 (2010).132 Ohno, H., “Functional design of ionic liquids”, B. Chem. Soc. Jpn, 79 (11), 1665-1680 (2006).133 Usuki, T., Yasuda, N., Yoshizawa-Fujita, M., Rikukawa, M., “Extraction and isolation of shikimic acid from ginkgo biloba leaves utilizing an ionic liquid that dissolves cellulose”, Chem. Commun., 47 |
[1] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant[J]. 中国化学工程学报, 2023, 60(8): 228-234. |
[2] | Xiaoli Li, Minghua Liu, Kang Wang, Zhiqiang Liu, Guihai Li. Data cleaning method for the process of acid production with flue gas based on improved random forest[J]. 中国化学工程学报, 2023, 59(7): 72-84. |
[3] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves[J]. 中国化学工程学报, 2023, 59(7): 182-192. |
[4] | Chaobo Zhang, Xiaoyong Yang, Jian Dai, Wenxia Liu, Hang Yang, Zhishan Bai. Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic[J]. 中国化学工程学报, 2023, 58(6): 137-145. |
[5] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography[J]. 中国化学工程学报, 2023, 58(6): 256-265. |
[6] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system[J]. 中国化学工程学报, 2023, 58(6): 291-305. |
[7] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems[J]. 中国化学工程学报, 2023, 57(5): 72-78. |
[8] | Yunchang Fan, Chunyan Zhu, Sheli Zhang, Lei Zhang, Qiang Wang, Feng Wang. Efficient and selective extraction of sinomenine by deep eutectic solvents[J]. 中国化学工程学报, 2023, 57(5): 109-117. |
[9] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites[J]. 中国化学工程学报, 2023, 57(5): 141-150. |
[10] | Dandan Ren, Shanshan Xiang, Yuwen Yan, Ruiying Kong, Xingchu Gong. Design and optimization of purification process of sinomenine hydrochloride[J]. 中国化学工程学报, 2023, 55(3): 63-72. |
[11] | Yu Kiat Lin, Yan-Na Sun, Yu Fan, Hui Yi Leong, Dong-Qiang Lin, Shan-Jing Yao. UV/Vis-based process analytical technology to improve monoclonal antibody and host cell protein separation[J]. 中国化学工程学报, 2023, 55(3): 230-235. |
[12] | Mustapha Omenesa Idris, Claudia Guerrero-Barajas, Hyun-Chul Kim, Asim Ali Yaqoob, Mohamad Nasir Mohamad Ibrahim. Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized microbial fuel cell: A systematic review[J]. 中国化学工程学报, 2023, 55(3): 277-292. |
[13] | Qinyan Wang, Yang Jin, Jun Li, Yongbo Zhou, Ming Chen. Study on liquid–liquid two-phase mass transfer characteristics in the microchannel with deformed insert[J]. 中国化学工程学报, 2023, 54(2): 114-126. |
[14] | Zhixian Chang, Xiangfeng Zhou, Huihua Bai, Deliang Li, Ling Zhang. Intensified reactive extraction of 4-hydroxypyridine with di(2-ethylhexyl) phosphoric acid in 1-octanol by using tributyl phosphate[J]. 中国化学工程学报, 2023, 54(2): 199-205. |
[15] | Yinglin Mai, Xiaoling Xian, Lei Hu, Xiaodong Zhang, Xiaojie Zheng, Shunhui Tao, Xiaoqing Lin. Liquid–liquid extraction of levulinic acid from aqueous solutions using hydrophobic tri-n-octylamine/alcohol-based deep eutectic solvent[J]. 中国化学工程学报, 2023, 54(2): 248-256. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||