[1] X. Li, S. Zhou, Process selection and adapTableility evaluation of sulphuric acid plant based on copper smelting flue gas, Sulphuric Acid Industry 2020 (07) (2020) 17-21+24 [2] Z. Pi, Z. Zhang, K. Wang, W. Chai, Treatment technology on wet plume of tail gas from copper concentrate drying, Nonferrous Metals Engineering Research 42 (03) (2021) 25-27. [3] X.L. Li, S.Q. Shen, S.X. Yang, K. Wang, Y. Li, Analysis and multi-objective optimization of slag powder process, Appl. Soft Comput. 96 (2020) 106587. [4] Z. Jiang, C. Xie, Y. Yao, H. Cheng, Summary of current status of sulphuric acid plant with smelting gas desulfurization process, Sulphuric Acid Industry (12) (2019) 29-32. [5] K. Giri, T.K. Biswas, P. Sarkar, ECR-DBSCAN: an improved DBSCAN based on computational geometry, Mach. Learn. Appl. 6 (2021) 100148. [6] X. Li, J. Gao, K. Wang, Multi-objective optimization of mill inlet and outlet temperature in slag powder production process, Control Theory and Applications 37 (02) (2020) 275-282. [7] R. Zhao, B. Du, L.P. Zhang, A robust nonlinear hyperspectral anomaly detection approach, IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 7 (4) (2014) 1227-1234. [8] J. Zhai, Y. Wang, Research on network anomaly detection algorithm based on fuzzy clustering, Electronic Measurement Technology 42 (16) (2019) 172-176. [9] T. Tian, M. Shi, X. Song, Y. Ma, X. Feng, Anomaly detecting method for time series based on sliding windows, Instrument Technique and Sensor (7) (2021) 112-116. [10] H. Fei, G. Li, Abnormal data detection algorithm for wsn based on k-means clustering, Computer Engineering 41 (07) (2015) 124-128. [11] H.G. Han, Z.F. Zhao, X.L. Wu, S.H. Yang, Z. He, N. Zhao, Data cleaning method for municipal wastewater treatment based on improved random forest, J. Beijing Univ. Technol. 47 (2021) (5)421-430. [12] C. Zhen, T. Yin, Short term wind power prediction based on parameter optimization of the variational modal decomposition and support vector regression, International Core Journal of Engineering 7 (10) (2021) 421-430. [13] L. Gao, Y. Yang, X. Ren, J. Yu, Q. Han, MPC strategy of air source heat pump temperature based on bp neural network, Control Engineering 28 (09) (2021) 1765-1772. [14] L.J. Chai, Y.N. Cai, M. Gao, Y. Hao, J.K. Chen, L. Jiang, A forecasting aided state estimation for distribution network based on weighted average interpolation and cubature Kalman filter, Electr. Power Constr. 42 (2021) 1. [15] Z. Lv, J. Zhao, Y. Liu, W. Wang, Missing data imputation based on maximal variance weight information coefficient for gas flow in steel industry, Control Theory and Applications 32 (05) (2015) 646-654. [16] Z.H. Pang, G.P. Liu, D.H. Zhou, D.H. Sun, Data-driven control with input design-based data dropout compensation for networked nonlinear systems, IEEE Trans. Control Syst. Technol. 25 (2) (2017) 628-636. [17] J. Gu, Z. Dong, C. Zhang, X. Du, M. Guizani, Dynamic stress measurement with sensor data compensation, Electronics 8 (8) 859. [18] C.S. Zhu, S.H. Li, Random forest regression model based on improved fruit fly optimization algorithm and its application in wind speed forecasting, J. Lanzhou Univ. Technol. 47 (2021) (4)83-90. [19] L.J. Feng, C.H. Zhao, B. Huang, Adversarial smoothing tri-regression for robust semi-supervised industrial soft sensor, J. Process. Control 108 (2021) 86-97. [20] W.K. Yu, C.H. Zhao, Robust monitoring and fault isolation of nonlinear industrial processes using denoising autoencoder and elastic net, IEEE Trans. Control Syst. Technol. 28 (3) (2020) 1083-1091. [21] Y.X. Zhang, Y.N. Dong, K. Wu, T. Chen, Hyperspectral anomaly detection with otsu-based isolation forest, IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 14 (2021) 9079-9088. [22] F.T. Liu, K.M. Ting, Z.H. Zhou, Isolation forest, In: 2008 eighth IEEE international conference on Data Mining, Pisa, Italy, 2008. [23] Y.L. Ao, H.Q. Li, L.P. Zhu, S. Ali, Z.G. Yang, The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling, J. Petroleum Sci. Eng. 174 (2019) 776-789. [24] Z. Guo, B. Yu, M.Y. Hao, W.S. Wang, Y. Jiang, F. Zong, A novel hybrid method for flight departure delay prediction using Random Forest Regression and Maximal Information Coefficient, Aerosp. Sci. Technol. 116 (2021) 106822. [25] J.L. Speiser, M.E. Miller, J. Tooze, E. Ip, A comparison of random forest variable selection methods for classification prediction modeling, Expert Syst Appl 134 (2019) 93-101. [26] L. Breiman, Random forests, Mach. Learn.45 (1) (2001) 5-32. [27] S. Katoch, S.S. Chauhan, V. Kumar, A review on genetic algorithm: past, present, and future, Multimed. Tools Appl.80 (5) (2021) 8091-8126. [28] H. Liu, S.Y. Shi, P. Yang, J.M. Yang, An improved genetic algorithm approach on mechanism kinematic structure enumeration with intelligent manufacturing, J. Intell. Robotic Syst.89 (3-4) (2018) 343-350. [29] Y. Sun, J.R. Li, X.L. Fu, H.F. Wang, H.H.Li, Application research based on improved genetic algorithm in cloud task scheduling, J. Intell. Fuzzy Syst. 38 (1) (2020) 239-246. [30] C.C. Ding, L. Chen, B.R. Zhong, Exploration of intelligent computing based on improved hybrid genetic algorithm, Clust. Comput.22 (4) (2019) 9037-9045. |