1 Webb, R.L., Kim, N.H., Principles of Enhanced Heat Transfer, Taylor and Francis, New York (2005).2 Choi, S.U.S., Eastman, J.A., “Enhancing thermal conductivity of fluids with nanoparticles”, In: International Mechanical Engineering Congress & Exposition, ASME, ANL/MSD/CP-84938, San Francisco (1995).3 Ding, Y., Alias, H., Wen, D., Williams, R.A., “Heat transfer of aqueous suspensions of carbon nanotubes CNT nanofluids”, Int. J. Heat Mass Transfer, 49, 240-250 (2006).4 He, Y., Jin, Y., Chen, H., Ding, Y., Cang, D., Lu, H., “Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe”, Int. J. Heat Mass Transfer, 50, 2272-2281 (2007).5 Chen, H.S., Yang, W., He, Y.R., Ding, Y.L., Zhang, L.L., Tan, C.Q., Lapkin, A.A., Bavykin, D.V., “Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids)”, Powder Technol., 183, 63-72 (2008).6 Pak, B., Cho, Y., “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles”, Exp. Heat Transfer, 11, 151-162 (1998).7 Xuan, Y., Li, Q., “Investigation on convective heat transfer and flow features of nanofluids”, J. Heat Transfer, 125, 151-155 (2003).8 Yang, Y., Zhang, Z.G., Grulke, E.A., Anderson, W.B., Wu, G., “Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow”, Int. J. Heat Mass Transfer, 48, 1107-1116 (2005).9 Wen, D., Ding, Y., “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions”, Int. J. Heat Mass Transfer, 47, 5181-5188 (2004).10 Kulkarni, D.P., Namburu, P.K., Bargar, H.E., Das, D.K., “Convective heat transfer and fluid dynamic characteristics of SiO2 ethylene glycol/water nanofluid”, Heat Transfer Eng., 29, 1027-1035 (2008).11 Wang, X.Q., Mujumdar, A.S., “Heat transfer characteristics of nanofluids: A review”, Int. J. Therm. Sci., 46, 1-19 (2007).12 Yu, W., Choi, S.U.S., “The role of interfational layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model”, J. Nanoparticle Res., 5, 167-171 (2003).13 Beckwith, T.G., Marangoni, R.D., Lienhard, J.H., Mechanical Measurements, Addison-Wesley Pub. Co., New York (1990).14 Shah, R.K., “Thermal entry length solutions for the circular tube and parallel plates”, In: Proceedings of 3rd National Heat and Mass Transfer Conference, Indian Institute of Technology, Bombay, 11-75 (1975).15 Celata, G.P., Cumo, M., Zummo, G., “Thermal-hydraulic characteristics of single-phase flow in capillary pipes”, Exp. Therm. Fluids Sci., 28, 87-95 (2004).16 Guo, Z.Y., Li, Z.X., “Size effect on single-phase channel flow and heat transfer at microscale”, Int. J. Heat Fluid Flow, 24, 284-329 (2003).17 Hwang, Y.J., Ahn, Y.C., Shin, H.S., Lee, C.G., Kim, G.T., Park, H.S., Lee, J.K., “Investigation on characteristics of thermal conductivity enhancement of nanofluids”, Current Appl. Phys., 6, 1068-1071 (2006).18 Varnik, F., Raabe, D., “Scaling effects in microscale fluid flows at rough solid surfaces”, Model. Simul. Mater. Sci. Eng., 14, 857-873 (2006).19 Keblinski, P., Phillpot, S.R., Choi, S.U.S., Eastman, J.A., “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)”, Int. J. Heat Mass Transfer, 45, 855-863 (2002).20 Phillips, R.J., Armstrong, R.C., Brown, R.A., Graham, A.L., Abbott, J.R., “A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration”, Phys. Fluids, 4, 30-40 (1992). |