1 Dhima, A., de Hemptinne, J.C., Jacques, J., “Solubility of hydrocarbons and CO2 mixtures in water under high pressure”, Ind. Eng. Chem. Research, 38, 3144-3161 (1999).2 Li, J., Vanderbeken, I., Ye, S., Carrier, H., Xans, P., “Prediction of the solubility and gas-liquid equilibria for gas-water and light hydrocarbon water systems at high temperatures and pressures with a group contribution equation of state”, Fluid Phase Equilibria, 131, 107-118 (1997).3 Errington, J.R., Boulougouris, G.C., Economou, I.G., Panagiotopoulos, A.Z., Theodorou, D.N., “Molecular simulation of phase equilibria for water-methane and water-ethane mixtures”, J. Phys. Chem. B, 102 (44), 8865-8873 (1998).4 Chapoy, A., Coquelet, C., Richon, D., “Solubility measurement and modeling of water in the gas phase of the methane/water binary system at temperatures from 283.08 to 318.12 K and pressures up to 34.5 MPa”, Fluid Phase Equilibria, 214, 101-117 (2003).5 Mohammadi, A.H., Richon, D., “Use of artificial neural networks for estimating water content of natural gases”, Ind. Eng. Chem. Research, 46, 1431-1438 (2007).6 Voutsas, E., Boulougourris, G.C., Economou, I.G., Tessios, D.P., “Phase equilibria of water/hydrocarbon systems from two equations of state using the thermodynamic perturbation theory", Ind. Eng. Chem. Research, 39, 797-804 (2000).7 Chapoy, A., Mohammadi, A.H., Richon, D., Tohidi, B., “Gas solubility measurement and modeling for methane-water and methane-ethane-n-butane-water systems at low temperature conditions”, Fluid Phase Equilibria, 220, 111-119 (2004).8 Chapoy, A., Mohammadi, A.H., Tohidi, B., Richon, D., “Gas solubility measurement and modeling for the nitrogen + water system from 274.18 K to 363.02 K”, J. Chem. Eng. Data, 49, 1110-1115 (2004).9 Chapoy, A., Mokraoui, S., Valtz, A., Richon, D., “Solubility measurement and modeling for the system propane-water from 277.62 to 368.16 K”, Fluid Phase Equilibria, 226, 213-220 (2004).10 Mohammadi, A.H., Chapoy, A., Tohidi, B., Richon, D., “Measurements and thermodynamic modeling of vapor-liquid equilibria in ethane-water systems from 274.26 to 343.08 K”, Ind. Eng. Chem. Research, 43, 5418-5424 (2004).11 Li, X.S., Englezos, P., “Vapor-liquid equilibrium of systems containing alcohols, water, carbon dioxide and hydrocarbons using SAFT”, Fluid Phase Equilibria, 224, 111-118 (2004).12 Wang, M.C., Wong, D.S.H., “Calculation of critical lines of hydrocarbon/water systems by extrapolating mixing rules fitted to subcritical equilibrium data”, Fluid Phase Equilibria, 227, 183-196 (2005).13 Valderrama, J.O., Faúndez, C.A., “Thermodynamic consistency test of high pressure gas-liquid equilibrium data including both phases”, Thermochimica Acta, 499, 85-90 (2010).14 Prausnitz, J.M., Molecular Thermodynamics of Fluid Phase Equilibria, 1st edition, Prentice Hall. Englewood Cliffs, New Jersey, USA (1969).15 Valderrama, J.O., “The state of the cubic equations of state”, Ind. Eng. Chem. Research, 42, 1603-1618 (2003).16 Vogel,J.L., Turek, E.A., Metcalfe, R.S., Bergman, D.F., Morris, R.W., “Applications of equations of state to calculate reservoir fluid properties”, Fluid Phase Equilibria, 14, 103-116 (1983).17 Willman, B., Teja, A.S., “Continuous thermodynamics of phase equilibria using a multivariate distribution function and equation of state”, AIChE Journal, 32, 2067-2078 (1986).18 Willman, B., Teja, A.S., “Prediction of dew points of semicontinuous natural gas and petroleum mixtures. 1. Characterization by use of an effective carbon number and ideal solution predictions”, Ind. Eng. Chem. Research, 26, 948-952 (1987).19 Willman, B., Teja, A.S., “Prediction of dew points of semicontinuous natural gas and petroleum mixtures. 2. Nonideal solution calculations”, Ind. Eng. Chem. Research, 26, 953-957 (1987).20 Lira-Galeana, C., Ponce, L., García, F., “A Molecular thermodynamic approach to the prediction of phase equilibria in reservoir simulation”, Can. J. Chem. Eng., 70, 559-568 (1992).21 Skjold-Jorgensen, S., “Gas solubility calculations. Ⅱ. Aplication of a new group contribution equation of state”, Fluid Phase Equilibria, 16, 317-351 (1984).22 Jensen, B.H., Fredenslund, A., “A simplified flash procedure for multicomponent mixtures containing hydrocarbons and one non-hydrocarbon using two-parameter cubic equations of state”, Ind. Eng. Chem. Research, 26, 2129-2134 (1987).23 Feyzi, F., Riazi, M.R., Shaban, H.I., Ghotbi, S., “Improving cubic equations of state for heavy reservoir fluids and critical region”, Chem. Eng. Comm., 167, 147-166 (1998).24 Xu, D., Danesh, A., Todd, A.C., Stewart,G., Comparative Study of Cubic Equations of State for Predicting Phase Behavior and Volumetric Properties of North Sea Reservoir Oils, In: International Conference on PVT Properties of Hydrocarbon System, Cranfield UK (1989).25 Danesh, A., Xu, D., Todd, A.C., “Comparative study of cubic equations of state for predicting phase behavior and volumetric properties of injection gas-reservoir oil systems”, Fluid Phase Equilibria, 63, 259-278 (1991).26 Zudkevitch, D., Joffe, J., “Correlation and prediction of vapor-liquid equilibria with the Redlich-Kwong equation of state”, AIChE Journal, 16, 112-119 (1970).27 Valderrama, J.O., “A generalized Patel-Teja equation of state for polar and nonpolar fluids and their mixtures”, J. Chem. Eng. Japan, 23, 87-91 (1990).28 Maekawa, T., “Equilibrium conditions for clathrate hydrates formed from methane and aqueous propanol solutions”, Fluid Phase Equilibria, 267, 1-5 (2008).29 Herrera, G., Vásquez, R., García, F., “Uso de reglas de mezclado tipo Wong-Sandler en la estimación de la formación incipiente de hidratos”, Revista Mexicana de Ingeniería Química, 2, 117-126 (2003).30 Paulus, M., Penoncello, S., “Correlation for the carbon dioxide and water mixture based on the Lemmon-Jacobsen mixture model and the Peng-Robinson equation of state”, International Journal of Thermophysics, 27, 1373-1386 (2006).31 Economou, I.G., Tsonopoulos, C., “Associating models and mixing rules in equations of state for water/hydrocarbon mixtures”, Chem. Engineering Science, 52, 511-525 (1997).32 Button, J.K., Gubbins, K.E., “Molecular dynamics simulation of hydrogen bonding in monoethanolamine”, Fluid Phase Equilibria, 158-160, 175-181 (1999).33 Tumakaka, F., Gross, J., Sadowski, G., “Thermodynamic modeling of complex systems using PC-SAF”, Fluid Phase Equilibria, 228-229, 89-98 (2005).34 Grenner, A., Konteorgios, G.M., von Solms, N., Michelsen, M.L., “Application of PC-SAFT to glycol containing systems – PC-SAFT towards a predictive approach”, Fluid Phase Equilibria, 261, 248-257 (2007).35 Ungerer, P., Lochet, V., Tavitian, B., “Applications of molecular simulation in oil and gas production and processing”, Oil & Gas Science and Technology Rev. IFP., 61 (3), 387-403 (2006).36 Elgibaly, A., Elkamel, A., “A new correlation for predicting hydrate formation conditions for various gas mixtures and inhibitors”, Fluid Phase Equilibria, 152, 23-42 (1998).37 Wong, D.S., Sandler, S.I., “A theoretically correct mixing rule for cubic equations of state”, AIChE Journal, 38, 671-680 (1992).38 Valderrama, J.O., Zavaleta, J., “Thermodynamic consistency test for high pressure gas-solid solubility data of binary mixtures using genetic algorithms”, The Journal of Supercritical Fluids, 39, 20-29 (2006).39 Valderrama, J.O., Alvarez, V.H., “A versatile thermodynamic consistency test for incomplete phase equilibrium data of high-pressure gas-liquid mixtures”, Fluid Phase Equilibria, 226, 149-159 (2004).40 Valderrama, J.O., Robles, P. A., “Thermodynamic consistency of high pressure ternary mixtures containing a compressed gas and solid solutes of different complexity”, Fluid Phase Equilibria, 242, 93-102 (2006).41 Valderrama, J.O., Reategui, A., Sanga, W., “Thermodynamic consistency test of vapor-liquid equilibrium data for mixtures containing ionic liquids”, Ind. Eng. Chem. Research, 47, 8416-8422 (2008).42 Mühlbauer, A.L., Measurement and Thermodynamic Interpretation of High Pressure Vapor-Liquid Equilibrium Data, Ph.D. Thesis, University of Natal, South Africa (1991).43 Jackson, P.L., Wilsak, R.A., “Thermodynamic consistency tests based on the Gibbs-Duhem equation applied to isothermal, binary vapor-liquid equilibrium data: Data evaluation and model testing”, Fluid Phase Equilibria, 103, 155-197 (1995).44 Bertucco, A., Barolo, M.,Elvassore, N., “Thermodynamic consistency of vapor-liquid equilibrium data at high pressure”, AIChE Journal, 43, 547-554 (1997).45 Chueh, P.L., Muirbrook, N.K., Prausnitz, J.M., “Multicomponent vapor-liquid equilibria at high pressures: Part Ⅱ. Thermodynamic analysis”, AIChE Journal, 11, 1097-1102 (1965).46 Won, K.W, Prausnitz, J.M., “High-pressure vapor-liquid equilibria. Calculation of partial pressures from total pressure data. thermodynamic consistency”, Ind. Eng. Chem. Fundam., 12 (4), 459-463 (1973).47 Christiansen, L.J., Fredenslund, A., “Thermodynamic consistency using orthogonal collocation or computation of equilibrium vapor compositions at high pressures”, AIChE Journal, 21, 49-57 (1975).48 Eslamimanesh, A., Mohammadi, A.H., Richon, D., “Thermodynamic consistency test for experimental solubility data in carbon dioxide/methane + water system inside and outside gas hydrate formation region”, J. Chem. Eng. Data, 56, 1573-1586 (2011).49 Peng, D.Y., Robinson, D.B., “A new two-constant equation of state”, Ind. Eng. Chem. Fundam., 15, 59-64 (1976).50 Daubert, T.E., Danner, R.P., Sibul, H.M., Stebbins, C.C., Physical and Thermodynamic Properties of Pure Chemicals. Data Compilation, Taylor & Francis, London, UK (1996).51 Gillespie, P., Wilson, G., “Research report RR-41: Vapor-liquid equilibria data on water-substitute gas components: N2-H2O, H2-H2O, CO-H2O, H2-CO-H2O, and H2S-H2O”, Wilco Research Company Provo, Project 758-B Utah, 1980 [2012-10-09], https://www.gpaglobal.org/publications/view/id/126/52 Knapp, H., Doring, R., Oellrich, L., Plocker, U., Prausnitz, J.M., Vapor-Liquid Equilibria for Mixtures of Low Boiling Substances, Chemistry Data Series, Dechema, Frankfurt-Germany (1982). |