[1] S.L. Ho, M. Xie, The use of ARIMA models for reliability forecasting and analysis, Comput. Ind. Eng. 35 (1998) 213-216. [2] C.X. Sun, W.M. Bi, Q. Zhou, R.J. Liao, W.G. Chen, New gray prediction parameter model and its application in electrical insulation fault prediction, Control Theory Appl. 20 (5) (2003) 797-901. [3] W. Gao, Y.G. Zheng, The discussion on prediction model of nonlinear time series, J. Tsinghua Univ. (Sci. Technol.) 40 (s2) (2000) 6-10. [4] B. Liu, D.P. Hu, Studies on applying artificial neural networks to some forecasting problem, J. Syst. Eng. 14 (4) (1999) 338-344. [5] J. Zhang, A.J. Morris, E.B. Martin, Long-term prediction model based on mixed order locally recurrent neural networks, Comput. Chem. Eng. 22 (7) (1998) 1051-1063. [6] H.D. Xue, Q.X. Zhu, Time series prediction algorithm based on structured analogy, Comput. Eng. 36 (1) (2010) 231-235. [7] X.P. Lai, H.X. Zhou, C.Q. Yun, Application of hybrid-model neural networks to shortterm electric load forecasting, Control Theory Appl. 17 (1) (2000) 69-72. [8] A. Lapades, R. Farbar, How neural nets work, Proc. Adv. Neural Inf. Process. Syst. (1987) 442-456. [9] D.Q. Zhang, Y.X. Ning, X.N. Liu, On-line prediction of nonlinear time series using RBF neural networks, Control Theory Appl. 26 (2) (2009) 153-157. [10] S. Haykin, J. Principe, Making sense of a complex world, IEEE Signal Process. Mag. 15 (3) (1998) 66-68. [11] M.R. Cowper, B. Mulgrew, C.P. Unsworth, Nonlinear prediction of chaotic signals using a normalized radial basis function network, Signal Process. 82 (5) (2002) 775-789. [12] Z.P. Feng, X.G. Song, D.X. Xue, A.P. Zheng, Y.M. Sun, Time series prediction based on general regression neural network, J. Vib. Meas. Diagn. 23 (2) (2003) 105-109. [13] F. Sun, Q.X. Zhu, Study and application on recurrent neural networks controller, J. Beijjing Univ. Chem. Technol. 27 (3) (2000) 88-90. [14] J.C. Principe, J.M. Kuo, Dynamic modeling of chaotic time series with neural networks, Advances in Neural Information Processing Systems, 7, MIT Press, Cambridge, MA, 1995, pp. 311-318. [15] J. Zhang, K.S. Tang, K.F. Man, Recurrent NN model for chaotic time series prediction, Proc. 23rd Annu. Int. Conf. Ind. Electron., Control, Instrum. (IECON), 3, 1997, pp. 9-14. [16] M. Han, J.H. Xi, S.G. Xu, F.L. Yin, Prediction of chaotic time series based on the recurrent predictor neural network, IEEE Trans. Signal Process. 52 (2) (2004) 3409-3416. [17] Herbert Jaeger, The Echo State Approach to Analyzing and Training Recurrent Network, Bremen: GMD Report 148, GMD—German National Research Institute for Computer Science, 2001. [18] T. Wolfgang Maass, M.H. Natschlager, Real-time computing without stable states: a new framework for neural computation based on perturbations, Neural Comput. 14 (1) (2002) 2531-2560. [19] D. Verstraeten, B. Schrauwen, M. D' Haene, D. Stroobandt, An experimental unification of reservoir computing methods, Neural Netw. 20 (3) (2007) 391-403. [20] Herbert Jaeger, Harald Haas, Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless telecommunication, Science 304 (5667) (2004) 78-80. [21] Y. Peng, J.M. Wang, X.Y. Peng, Researches on time series prediction with echo state networks, Acta Electron. Sin. 38 (2A) (2010) 148-154. [22] Herbert Jaeger, Mantas Lukosevieius, Dan Popovici, Udo Siewert, Optimization and applications of echo state networks with leaky integrator neurons, Neural Netw. 20 (3) (2007) 335-352. [23] M.D. Skowronski, J.G. Harris, Automatic speech recognition using a predictive echo state network classifier, Neural Netw. 20 (3) (2007) 414-423. [24] D. Verstraeten, B. Schrauwen, D. Stroobandt, J. Van Campen hout, Isolated word recognition with the liquid state machine: a case study, Inf. Process Lett. 95 (6) (2005) 521-528. [25] C.D. Pei, Echo state networks and its applications on image edge detection, Comput. Eng. Appl. 44 (19) (2008) 172-174. [26] Q.S. Song, Z.R. Feng, A new method to construct complex echo state networks, J. Xi' an Jiao Tong Univ. 43 (4) (2009) 1-4. [27] Georg Holzrmann, Helmut Hauser, Echo state networks with filter neurons and delay&sum readout, Neural Netw. 23 (2) (2010) 244-256. [28] H.W. Zhang, Sunspot Number Prediction Based on Wavelet Analysis and BP Neural Network, 2009. [29] Luis T. Antelo, Julio R. Banga, Antonio A. Alonso, Hierarchical design of decentralized control structures for the Tennessee Eastman Process, Comput. Chem. Eng. 32 (2008) 1995-2015. [30] N. Lv, X.Y. Yu, Fault diagnosis of TE process based on second-order mutual information feature selection, J. Chem. Ind. Eng. 60 (9) (2009) 2252-2258. |