[1] J.P. Guo, C.D. Zhou, Greenhouse gas emissions and mitigation measures in Chineseagroecosystems, Agric. For. Meteorol. 142 (2-4) (2007) 270-277.
[2] K. Ito, Y. Uchiyama, T. Takeshita, H. Hayashibe, Study on GHG control scenarios bylife cycle analysis-world energy outlook until 2100, Energy Convers. Manag. 38(7) (1997) 607-614.
[3] C.Ö. Karacan, F.A. Ruiz, M. Cote, S. Phipps, Coal mine methane: a review of captureand utilization practices with benefits to mining safety and to greenhouse gasreduction, Int. J. Coal Geol. 86 (2-3) (2011) 121-156.
[4] Y.P. Cheng, L. Wang, X.L. Zhang, Environmental impact of coal mine methaneemissions and responding strategies in China, Int. J. Greenhouse Gas Control 5 (1)(2011) 157-166.
[5] R.E. Hayes, Catalytic solutions for fugitive methane emissions in the oil and gassector, Chem. Eng. Sci. 59 (2) (2004) 4073-4080.
[6] S. Andrea, S.B. Paola, L. Gianluca, P. Raffaele, R. Gennaro, Combustion of methane-hydrogen mixtures on catalytic tablets, Chem. Eng. J. 154 (1-3) (2009) 315-324.
[7] R.E. Hayes, S.T. Kolaczkowski, Introduction to Catalytic Combustion, Gordon andBreach, UK, 1997. 323-325.
[8] N. Russo, P. Palmisano, D. Fino, Pd substitution effects on perovskite catalyst activityfor methane emission control, Chem. Eng. J. 154 (1-3) (2009) 137-141.
[9] K. Xu, Z.L. Liu, H. He, S.Y. Cheng, C.F. Ma, Experimental study on emission control ofpremixed catalytic combustion of natural gas using preheated air, Chin. J. Chem. Eng.15 (1) (2007) 68-74.
[10] Y.S. Matros, G.A. Bunimovich, Reverse-flow operation in fixed bed catalytic reactors,Catal. Rev. 38 (1) (1996) 1-67.
[11] P. Marin, S. Ordonez, F.V. Diez, Procedures for heat recovery in the catalytic combustionof lean methane-air mixtures in a reverse flow reactor, Chem. Eng. J. 147 (2-3)(2009) 356-365.
[12] K. Gosiewskia, K. Warmuzinski, Effect of the mode of heat withdrawal on theasymmetry of temperature profiles in reverse-flow reactors. Catalytic combustionof methane as a test case, Chem. Eng. Sci. 62 (2) (2007) 2679-2689.
[13] B. Liu, R.E. Hayes, M.D. Checkel, M. Zheng, E. Mirosh, Reversing flow catalyticconverter for a natural gas/diesel dual fuel engine, Chem. Eng. Sci. 56 (2) (2001)2641-2685.
[14] A.G.Miguel, O. Hevia Salvador, V.D. Fernando, Effect of the catalyst properties on theperformance of a reverse flow reactor for methane combustion in lean mixtures,Chem. Eng. J. 129 (1) (2009) 1-10.
[15] S. Salomons, R.E. Hayes, M. Poirier, H. Sapoundjiev,Modelling a reverse flow reactorfor the catalytic combustion of fugitive methane emissions, Comput. Chem. Eng. 28(1) (2004) 1599-1610.
[16] R. Litto, R.E. Hayes, H. Sapoundjiev, A. Fuxman, F. Forbes, B. Liu, F. Bertrand,Optimization of a flow reversal reactor for the catalytic combustion of leanmethanemixtures, Catal. Today 117 (1) (2006) 536-542.
[17] P. Marin, M.A.G. Hevia, S. Ordonez, F.V. Drez, Combustion of methane lean mixturesin reverse flow reactors: comparison between packed and structured catalyst beds,Catal. Today 105 (3-4) (2005) 701-708.
[18] Y.H. Chin, D.E. Resasco, Catalytic oxidation of methane on supported palladiumunder lean conditions: kinetics, structures and properties, Catalysis 14 (1) (1999)1-39.
[19] X.K. Niu, Modeling of Reverse FlowCatalytic Combustion Process for Air Purification,Ph.D. Thesis Beijing University of Chemical Technology, China, 2003. (in Chinese).
[20] J.Y. Huang, C.Y. Li, A robust adaptive algorithm for flow reversal fixed-bed flowreversal fixed-bed reactor models, Process 2nd Joint China/USA Chemical EngineeringConference, Chem. Ind. Press, Beijing, 1997, pp. 266-270.
[21] S. Salomons, R.E. Hayes, M. Poirier, H. Sapoundjiev, Flow reversal reactor for thecatalytic combustion of lean methane mixtures, Catal. Today 83 (1) (2003) 59-69.
[22] A. Kushwaha, R.E. Hayes, M. Poirier, H. Sapoundjiev, Effect of reactor internal propertieson the performance of a flow reversal catalytic reactor for methane combustion,Chem. Eng. Sci. 59 (1) (2004) 4081-4093.
[23] A. Kushwaha, M. Poirier, R.E. Hayes, H. Sapoundjiev, Heat extraction from a flowreversal reactor in lean methane combustion, Chem. Eng. Res. Des. 83 (1) (2005)205-213. |