[1] J. Towfighi, A. Niaei, R. Karimzadeh, G. Saedi, Systematics and modelling representations of LPG thermal cracking for olefin production, Korean J. Chem. Eng. 23 (1) (2006) 8-16 [2] G.H. Hu, H.G. Wang, F. Qian, K.M. van Geem, C.M. Schietekat, G.B. Marin, Coupled simulation of an industrial naphtha cracking furnace equipped with long-flame and radiation burners, Comput. Chem. Eng. 38 (2012) 24-34 [3] K.M. Sundaram, G.F. Froment, Modeling of thermal cracking kinetics-I:Thermal cracking of ethane, propane and their mixtures, Chem. Eng. Sci. 32 (6) (1977) 601-608 [4] K.M. Sundaram and G.F. Froment, Modeling of thermal cracking kinetics-II:Cracking of iso-butane, of n-butane and of mixtures ethane-propane-n-butane, Chem. Eng. Sci. 32(6) (1977) 609617 [5] P. Kumar, D. Kunzru, Modeling of naphtha pyrolysis, Ind. Eng. Chem. Process. Des. Dev. 24 (3) (1985) 774-782 [6] S.Z. Abghari, J.T. Darian, R. Karimzadeh, M.R. Omidkhah, Determination of yield distribution in olefin production by thermal cracking of atmospheric gasoil, Korean J. Chem. Eng. 25 (4) (2008) 681-692 [7] M. Sedighi, K. Keyvanloo, J. Towfighi, Experimental study and optimization of heavy liquid hydrocarbon thermal cracking to light olefins by response surface methodology, Korean J. Chem. Eng. 27 (4) (2010) 1170-1176 [8] G.J. Heynderickx, A.J.M. Oprins, G.B. Marin, E. Dick, Three-dimensional flow patterns in cracking furnaces with long-flame burners, AIChE J. 47 (2) (2001) 388-400 [9] A.J.M. Oprins, G.J. Heynderickx, G.B. Marin, Three-dimensional asymmetric flow and temperature fields in cracking furnaces, Ind. Eng. Chem. Res. 40 (23) (2001) 5087-5094 [10] R.K. Garg, V.V. Krishnan, V.K. Srivastava, Prediction of concentration and temperature profiles for non-isothermal ethane cracking in a pipe reactor, Korean J. Chem. Eng. 23 (4) (2006) 531-539 [11] N. Zhang, T. Qiu, B.Z. Chen, CFD simulation of propane cracking tube using detailed radical kinetic mechanism, Chin. J. Chem. Eng. 21 (12) (2013) 1319-1331 [12] G.H. Hu, C.M. Schietekat, Y. Zhang, F. Qian, G. Heynderickx, K.M. van Geem, G.B. Marin, Impact of radiation models in coupled simulations of steam cracking furnaces and reactors, Ind. Eng. Chem. Res. 54 (9) (2015) 2453-2465 [13] Z. Fang, T. Qiu, W.G. Zhou, Coupled simulation of recirculation zonal firebox model and detailed kinetic reactor model in an industrial ethylene cracking furnace, Chin. J. Chem. Eng. 25 (8) (2017) 1091-1100 [14] X. Lan, J. Gao, C. Xu, H. Zhang, Numerical simulation of transfer and reaction processes in ethylene furnaces, Chem. Eng. Res. Des. 85 (12) (2007) 1565-1579 [15] G.H. Hu, H.G. Wang, F. Qian, Y. Zhang, J.L. Li, K.M. van Geem, G.B. Marin, Comprehensive CFD simulation of product yields and coking rates for a floor- and wall-fired naphtha cracking furnace, Ind. Eng. Chem. Res. 50 (24) (2011) 13672-13685 [16] J.J. De Saegher, T. Detemmerman, and G.F. Froment, Three-dimensional simulation of high-severity internally finned cracking coils for olefins production, Revue de I'Institut Francais du Petrole. 51(2) (1996) 245-260 [17] T. Detemmerman, G.F. Froment, Three dimensional coupled simulation of furnaces and reactor tubes for the thermal cracking of hydrocarbons, Rev. Inst. Fr. Pét. 53 (2) (1998) 181-194 [18] H.C. Hottel, A.F. Sarofim, Radiative Transfer, McGraw-Hill, New York,USA,1967 [19] G.D. Stefanidis, B. Merci, G.J. Heynderickx, G.B. Marin, CFD simulations of steam cracking furnaces using detailed combustion mechanisms, Comput. Chem. Eng. 30 (4) (2006) 635-649 [20] W.J. Zhu, X.W. Liu, X. Hou, J.Y. Hu, Z.H. Diao, Application of machine learning to process simulation of n-pentane cracking to produce ethylene and propene, Chin. J. Chem. Eng. 28 (7) (2020) 1832-1839 [21] A. Habibi, B. Merci, G.J. Heynderickx, Impact of radiation models in CFD simulations of steam cracking furnaces, Comput. Chem. Eng. 31 (11) (2007) 1389-1406 [22] Y. Zhang, F. Qian, Y. Zhang, C.M. Schietekat, K.M. van Geem, A. Guy, G.B. Marin, Impact of flue gas radiative properties and burner geometry in furnace simulations, AIChE J. 61 (3) (2015) 936-954 [23] P. Kumar, D. Kunzru, Kinetics of coke deposition in naphtha pyrolysis, Can. J. Chem. Eng. 63 (4) (1985) 598-604 [24] P.M. Plehiers, G.C. Reyniers, G.F. Froment, Simulation of the Run length of an ethane cracking furnace, Ind. Eng. Chem. Res. 29 (4) (1990) 636-641 [25] G.C. Reyniers, G.F. Froment, F.D. Kopinke, G. Zimmermann, Coke formation in the thermal cracking of hydrocarbons. 4. modeling of coke formation in naphtha cracking, Ind. Eng. Chem. Res. 33 (11) (1994) 2584-2590 [26] B.P. Ennis, H.B. Boyd, and R. Orriss, Olefin manufacture via millisecond pyrolysis, Chemtech. 5(11) (1975) 693-699 [27] A. Fahiminezhad, S.M. Peyghambarzadeh, and M. Rezaeimanesh, Numerical modelling and industrial verification of ethylene dichloride cracking furnace, J. Chem. Petrol. Eng. 54(2) (2020) 165-185 [28] M. Bösenhofer, E.M. Wartha, C. Jordan, M. Harasek, The eddy dissipation concept-analysis of different fine structure treatments for classical combustion, Energies 11 (7) (2018) 1902 [29] C.K. Westbrook, F.L. Dryer, Chemical kinetic modeling of hydrocarbon combustion, Prog. Energy Combust. Sci. 10 (1) (1984) 1-57 [30] F.L. Dryer, I. Glassman, High-temperature oxidation of CO and CH4, Symp. Int. Combust. 14 (1) (1973) 987-1003 [31] S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combust. Theory Model. 1 (1) (1997) 41-63 [32] A. Kumar, S. Mazumder, Adaptation and application of the In Situ Adaptive Tabulation (ISAT) procedure to reacting flow calculations with complex surface chemistry, Comput. Chem. Eng. 35 (7) (2011) 1317-1327 [33] M.F. Modest, Radiative Heat Transfer, 3rd ed. Academic Press, Salt Lake City,USA,2013 [34] B.F. Yuan, J.L. Li, W.L. Du, F. Qian, Study on co-cracking performance of different hydrocarbon mixture in a steam pyrolysis furnace, Chin. J. Chem. Eng. (2016) 24(9)1252-1262 [35] R.C. Reid, J.M. Prausnitz, and B.R. Poling, Properties of Gases and Liquids, 5th ed., McGraw-Hill,, New York,USA 2001 [36] J. Gmehling, M. Kleiber, B. Kolbe, J. Rarey, Enthalpy of reaction and chemical equilibria. Chemical Thermodynamics for Process Simulation. Weinheim, Germany:Wiley-VCH Verlag GmbH & Co. KGaA, 2019:505-547. [37] D. de Manca, G. Buzzi-Ferraris, A. Cuoci, A. Frassoldati, The solution of very large non-linear algebraic systems, Comput. Chem. Eng. 33 (10) (2009) 1727-1734 [38] S. Seifzadeh Haghighi, M.R. Rahimpour, S. Raeissi, O. Dehghani, Investigation of ethylene production in naphtha thermal cracking plant in presence of steam and carbon dioxide, Chem. Eng. J. 228 (2013) 1158-1167 [39] K. Barazandeh, O. Dehghani, M. Hamidi, E. Aryafard, M.R. Rahimpour, Investigation of coil outlet temperature effect on the performance of naphtha cracking furnace, Chem. Eng. Res. Des. 94 (2015) 307-316 [40] K.M. Sundaram, P.S. van Damme, G.F. Froment, Coke deposition in the thermal cracking of ethane, AIChE J. 27 (6) (1981) 946-951 [41] H. Versteeg, An Introduction to Computational Fluid Dynamics the Finite Volume Method, 2nd edition, Pearson Education,, New York,USA 2007 [42] N. Rahimi, R. Karimzadeh, S.M. Jazayeri, K.D. Nia, An empirical investigation of the influence of sulfur additives on the catalytic rate of coke deposition and CO formation in the steam cracking of LPG over Incoloy 600 and stainless steel, Chem. Eng. J. 238 (2014) 210-218 [43] J.D. Wang, M.F. Reyniers, G.B. Marin, Influence of dimethyl disulfide on coke formation during steam cracking of hydrocarbons, Ind. Eng. Chem. Res. 46 (12) (2007) 4134-4148 |