[1] I. Yuranov, D.A. Bulushev, A. Renken, L. Kiwi-Minsker, Benzene hydroxylation over FeZSM-5 catalysts: which Fe sites are active? J. Catal. 227 (1) (2004) 138-147. [2] F.M. Zhang, X. Chen, J. Zhuang, Q. Xiao, Y.J. Zhong,W.D. Zhu, Direct oxidation of benzene to phenol by N2O over meso-Fe-ZSM-5 catalysts obtained via alkaline posttreatment, Catal. Sci. Technol. 1 (7) (2011) 1250-1255. [3] S. Niwa, M. Eswaramoorthy, J. Nair, A. Raj, N. Itoh, H. Shoji, T. Namba, F. Mizukami, A one-step conversion of benzene to phenol with a palladium membrane, Science 295 (5552) (2002) 105-107. [4] N. Itoh, S. Niwa, F. Mizukami, T. Inoue, A. Igarashi, T. Namba, Catalytic palladium membrane for reductive oxidation of benzene to phenol, Catal. Commun. 4 (5) (2003) 243-246. [5] X.F. Chen, J.S. Zhang, X.Z. Fu, M. Antonietti, X.C. Wang, Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light, J. Am. Chem. Soc. 131 (33) (2009) 11658-11659. [6] K. Lemke, H. Ehrich, U. Lohse, H. Berndt, K. Jähnisch, Selective hydroxylation of benzene to phenol over supported vanadium oxide catalysts, Appl. Catal. A Gen. 243 (1) (2003) 41-51. [7] M. Stöckmann, F. Konietzni, J.U. Notheis, J. Voss, W. Keune,W.F. Maier, Selective oxidation of benzene to phenol in the liquid phase with amorphous microporous mixed oxides, Appl. Catal. A Gen. 208 (1-2) (2001) 343-358. [8] J.F. Bengoa, N.G. Gallegos, S.G. Marchetti, A.M. Alvarez, M.V. Cagnoli, A.A. Yeramián, Influence of TS-1 structural properties and operation conditions on benzene catalytic oxidation with H2O2, Microporous Mesoporous Mater. 24 (4-6) (1998) 163-172. [9] N.K.K. Raj, S.S. Deshpande, R.H. Ingle, T. Raja, P. Manikandan, Heterogenized molybdovanadophosphoric acid on amine-functionalized SBA-15 for selective oxidation of alkenes, Catal. Lett. 98 (4) (2004) 217-223. [10] H.Q. Ge, Y. Leng, C.J. Zhou, J.Wang, Direct hydroxylation of benzene to phenol with molecular oxygen over phase transfer catalysts: Cyclodextrins complexes with vanadium-substituted heteropoly acids, Catal. Lett. 124 (3-4) (2008) 324-329. [11] N.A. Alekar, V. Indira, S.B. Halligudi, D. Srinivas, S. Gopinathan, C. Gopinathan, Kinetics and mechanism of selective hydroxylation of benzene catalysed by vanadium substituted heteropolymolybdates, J. Mol. Catal. A Chem. 164 (1-2) (2000) 181-189. [12] J. Zhang, Y. Tang, G.Y. Li, C.W. Hu, Room temperature direct oxidation of benzene to phenol using hydrogen peroxide in the presence of vanadium-substituted heteropolymolybdates, Appl. Catal. A Gen. 278 (2) (2005) 251-261. [13] F.M. Zhang, M.P. Guo, H.Q. Ge, J. Wang, Hydroxylation of benzene with hydrogen peroxide over highly efficient molybdovanadophosphoric heteropoly acid catalysts, Chin. J. Chem. Eng. 15 (6) (2007) 895-898. [14] N.I. Kuznetsova, N.V. Kirillova, L.I. Kuznetsova, M.Y. Smirnova, V.A. Likholobov, Hydrogen peroxide and oxygen-hydrogen oxidation of aromatic compounds in catalytic systems containing heteropoly compounds, J. Hazard. Mater. 146 (3) (2007) 569-576. [15] J. Arichi, M. Eternot, B. Louis, Synthesis of V-containing Keggin polyoxometalates: Versatile catalysts for the synthesis of fine chemicals? Catal. Today 138 (1-2) (2008) 117-122. [16] Y. Leng, J. Wang, D.R. Zhu, L. Shen, P.P. Zhao, M.J. Zhang, Heteropolyanion-based ionic hybrid solid: A green bulk-type catalyst for hydroxylation of benzenewith hydrogen peroxide, Chem. Eng. J. 173 (2) (2011) 620-626. [17] H.Q. Ge, Y. Leng, F.M. Zhang, C.J. Zhou, J. Wang, Direct hydroxylation of benzene to phenol with molecular oxygen over pyridine-modified vanadium-substituted heteropoly acids, Catal. Lett. 124 (3-4) (2008) 250-255. [18] K. Inumaru, T. Ishihara, Y. Kamiya, T. Okuhara, S. Yamanaka, Water-tolerant, highly active solid acid catalysts composed of the Keggin-type polyoxometalate H3PW12O40 immobilized in hydrophobic nanospaces of organomodified mesoporous silica, Angew. Chem. Int. Ed. 46 (40) (2007) 7625-7628. [19] R.H. Ingle, A. Vinu, S.B. Halligudi, Alkene epoxidation catalyzed by vanadomolybdophosphoric acids supported on hydrated titania, Catal. Commun. 9 (5) (2008) 931-938. [20] Y.Y. Liu, K. Murata,M. Inaba, Direct oxidation of benzene to phenol bymolecular oxygen over catalytic systems containing Pd(OAc)2 and heteropolyacid immobilized on HMS or PIM, J. Mol. Catal. A Chem. 256 (1-2) (2006) 247-255. [21] M. Rostami, A. Khosropour, V. Mirkhani, M. Moghadam, S. Tangestaninejad, I. Mohammadpoor-Baltork, Organic-inorganic hybrid polyoxometalates: efficient, heterogeneous and reusable catalysts for solvent-free synthesis of azlactones, Appl. Catal. A Gen. 397 (1-2) (2011) 27-34. [22] K. Shimizu, S. Kontani, S. Yamada, G. Takahashi, T. Nishiyama, A. Satsuma, Design of active centers for bisphenol-A synthesis by organic-inorganic dual modification of heteropolyacid, Appl. Catal. A Gen. 380 (1-2) (2010) 33-39. [23] Z. Karimi, A.R. Mahjoub, S.M. Harati, Polyoxometalate-based hybrid mesostructured catalysts for green epoxidation of olefins, Inorg. Chim. Acta 376 (1) (2011) 1-9. [24] A. Nisar, Y. Lu, J. Zhuang, X. Wang, Polyoxometalate nanocone nanoreactors: Magnetic manipulation and enhanced catalytic performance, Angew. Chem. Int. Ed. 50 (14) (2011) 3187-3192. [25] C. Li, Z.X. Jiang, J.B. Gao, Y.X. Yang, S.J.Wang, F.P. Tian, F.X. Sun, X.P. Sun, P.L. Ying, C.R. Han, Ultra-deep desulfurization of diesel: Oxidation with a recoverable catalyst assembled in emulsion, Chem. Eur. J. 10 (9) (2004) 2277-2280. [26] T. Okuhara, Microporous heteropoly compounds and their shape selective catalysis, Appl. Catal. A Gen. 256 (1-2) (2003) 213-224. [27] T. Nakato, M. Kimura, S. Nakata, T. Okuhara, Changes of surface properties and water-tolerant catalytic activity of solid acid Cs2.5H0.5PW12O40 in water, Langmuir 14 (2) (1998) 319-325. [28] N. Essayem, G. Coudurier, M. Fournier, J.C. Vedrine, Acidic and catalytic properties of CsxH3-xPW12O40 heteropolyacid compounds, Catal. Lett. 34 (1-2) (1995) 223-235. [29] Y. Leng, J. Wang, D.R. Zhu, X.Q. Ren, H.Q. Ge, L. Shen, Heteropolyanion-based ionic liquids: reaction-induced self-separation catalysts for esterification, Angew. Chem. Int. Ed. 48 (1) (2009) 168-171. [30] T. Okayasu, K. Saito, H. Nishide, M.T.W. Hearn, Poly(vinylsulfonic acid)-grafted solid catalysts: new materials for acid-catalysed organic synthetic reactions, Green Chem. 12 (11) (2010) 1981-1989. [31] C.Y. Sun, S.X. Liu, D.D. Liang, K.Z. Shao, Y.H. Ren, Z.M. Su, Highly stable crystalline catalysts based on a microporous metal-organic framework and polyoxometalates, J. Am. Chem. Soc. 131 (5) (2009) 1883-1888. [32] W. Qi, Y.Z. Wang, W. Li, L.X. Wu, Surfactant-encapsulated polyoxometalates as immobilized supramolecular catalysts for highly efficient and selective oxidation reactions, Chem. Eur. J. 16 (3) (2010) 1068-1078. [33] F.X. Gao, R.M. Hua, Highly efficient K7NiV13O38-catalyzed hydroxylation of aromatics with aqueous hydrogen peroxide (30%), Appl. Catal. A Gen. 270 (1-2) (2004) 223-226. [34] S. Yamaguchi, S. Sumimoto, Y. Ichihashi, S. Nishiyama, S. Tsuruya, Liquid-phase oxidation of benzene to phenol over V-substituted heteropolyacid catalysts, Ind. Eng. Chem. Res. 44 (1) (2005) 1-7. [35] J.Q. Chen, S. Gao, J. Xu, Direct hydroxylation of benzene to phenol over a new vanadium-substituted phosphomolybdate as a solid catalyst, Catal. Commun. 9 (5) (2008) 728-733. [36] P.K. Khatri, B. Singh, S.L. Jain, B. Sain, A.K. Sinha, Cyclotriphosphazene grafted silica: A novel support for immobilizing the oxo-vanadium Schiff base moieties for hydroxylation of benzene, Chem. Commun. 47 (5) (2011) 1610-1612. [37] E. Battistel, R. Tassinari, M. Fornaroli, L. Bonoldi, Oxidation of benzene by molecular oxygen catalysed by vanadium, J. Mol. Catal. A Chem. 202 (1-2) (2003) 107-115. [38] T. Sakamoto, T. Takagaki, A. Sakakura, Y. Obora, S. Sakaguchi, Y. Ishii, Hydroxylation of benzene to phenol under air and carbon monoxide catalyzed by molybdovanadophosphates, J. Mol. Catal. A Chem. 288 (1-2) (2008) 19-22. |