[1] F. Xiao, J. Du, L. Liu, G. Luan, P. Yao, Simultaneous optimization of synthesis and scheduling of cleaning in flexible heat exchanger networks, Chin. J. Chem. Eng. 18 (3) (2010) 402-411.[2] R. Smith, M. Jobson, L. Chen, Recent development in the retrofit of heat exchanger networks, Appl. Therm. Eng. 30 (16) (2010) 2281-2289.[3] L. Kang, Y. Liu, Retrofit of heat exchanger networks for multi-period operations by matching heat transfer areas in reverse order, Ind. Eng. Chem. Res. 53 (12) (2014) 4792-4804.[4] D. Yi, Z. Han, K. Wang, P. Yao, Strategy for synthesis of flexible heat exchanger networks embedded with system reliability analysis, Chin. J. Chem. Eng. 21 (7) (2013) 742-753.[5] T.N. Tjoe, B. Linnhoff, Using pinch technology for process retrofit, Chem. Eng. 93 (8) (1986) 47-60.[6] R. Nordman, T. Berntsson, Use of advanced composite curves for assessing costeffective HEN retrofit II. Case studies, Appl. Therm. Eng. 29 (2-3) (2009) 282-289.[7] J.L. van Reisen, G.T. Polley, P.J. Verheijen, Structural targeting for heat integration retrofit, Appl. Therm. Eng. 18 (5) (1998) 283-294.[8] B.H. Li, C.T. Chang, Retrofitting heat exchanger networks based on simple pinch analysis, Ind. Eng. Chem. Res. 49 (8) (2010) 3967-3971.[9] B. Bakhtiari, S. Bedard, Retrofitting heat exchanger networks using a modified network pinch approach, Appl. Therm. Eng. 51 (1-2) (2013) 973-979.[10] T.F. Yee, I.E. Grossmann, A screening and optimization approach for the retrofit of heat-exchanger networks, Ind. Eng. Chem. Res. 30 (1) (1991) 146-162.[11] K.-L. Ma, C.-W. Hui, T.F. Yee, Constant approach temperature model for HEN retrofit, Appl. Therm. Eng. 20 (15-16) (2000) 1505-1533.[12] A. Soršak, Z. Kravanja, MINLP retrofit of heat exchanger networks comprising different exchanger types, Comput. Chem. Eng. 28 (1-2) (2004) 235-251.[13] J.M. Ponce-Ortega, A. Jiménez-Gutiérrez, I.E. Grossmann, Simultaneous retrofit and heat integration of chemical processes, Ind. Eng. Chem. Res. 47 (15) (2008) 5512-5528.[14] B.K. Sreepathi, G. Rangaiah, Improved heat exchanger network retrofitting using exchanger reassignment strategies and multi-objective optimization, Energy 67 (2014) 584-594.[15] A. Kova? Kralj, Optimization of an industrial retrofitted heat exchanger network, using a stage-wise model, Energy 35 (12) (2010) 4748-4753.[16] X.-w. Liu, X. Luo, H.-g. Ma, Studies on the retrofit of heat exchanger network based on the hybrid genetic algorithm, Appl. Therm. Eng. 62 (2) (2014) 785-790.[17] K.-M. Björk, R. Nordman, Solving large-scale retrofit heat exchanger network synthesis problems with mathematical optimization methods, Chem. Eng. Process. Process Intensif. 44 (8) (2005) 869-876.[18] E. Rezaei, S. Shafiei, Heat exchanger networks retrofit by coupling genetic algorithm with NLP and ILP methods, Comput. Chem. Eng. 33 (9) (2009) 1451-1459.[19] H. Zhang, G.P. Rangaiah, One-step approach for heat exchanger network retrofitting using integrated differential evolution, Comput. Chem. Eng. 50 (0) (2013) 92-104.[20] J. Zhang, X.X. Zhu, Simultaneous optimization approach for heat exchanger network retrofit with process changes, Ind. Eng. Chem. Res. 39 (12) (2000) 4963-4973.[21] N. Zhang,W. Verheyen, Design of flexible heat exchanger network for multi-period operation, Chem. Eng. Sci. 61 (23) (2006) 7730-7753.[22] A.R. Ciric, C.A. Floudas, A mixed integer nonlinear programming model for retrofitting heat-exchanger networks, Ind. Eng. Chem. Res. 29 (2) (1990) 239-251. |