中国化学工程学报 ›› 2019, Vol. 27 ›› Issue (7): 1485-1497.DOI: 10.1016/j.cjche.2018.09.015
• Selected Papers on Sustainable Chemical Process Systems • 上一篇 下一篇
Lixia Kang1, Yongzhong Liu1,2
收稿日期:
2018-07-17
出版日期:
2019-07-28
发布日期:
2019-10-14
通讯作者:
Yongzhong Liu
Lixia Kang1, Yongzhong Liu1,2
Received:
2018-07-17
Online:
2019-07-28
Published:
2019-10-14
Contact:
Yongzhong Liu
摘要: Dealing with uncertainty is one of practical issues in design and operation of heat exchanger networks (HENs), arising the problem of flexible HEN synthesis. This paper addresses the state-of-the-art methods for flexible HEN synthesis based on sensitivity analysis, resilience analysis, flexibility analysis and multiperiod synthesis techniques as well. Each of these methods is summarized by presenting their general procedures and recent developments on modeling, solving strategies and applications. Some current topics related to flexible process synthesis have been briefly presented to provide several future research possibilities.
Lixia Kang, Yongzhong Liu. Synthesis of flexible heat exchanger networks: A review[J]. 中国化学工程学报, 2019, 27(7): 1485-1497.
Lixia Kang, Yongzhong Liu. Synthesis of flexible heat exchanger networks: A review[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1485-1497.
[1] I.E. Grossmann, R.M. Apap, B.A. Calfa, P. Garcia-Herreros, Q. Zhang, Mathematical programming techniques for optimization under uncertainty and their application in process systems engineering, Theor. Found. Chem. Eng. 51(6) (2017) 893-909. [2] A.H. Masso, D.F. Rudd, The synthesis of system designs. Ⅱ. Heuristic structuring, AIChE J. 15(1) (1969) 10-17. [3] S.A. Papoulias, I.E. Grossmann, A structural optimization approach in process synthesis-Ⅱ. Heat recovery networks, Comput. Chem. Eng. 7(6) (1983) 707-721. [4] C.A. Floudas, A.R. Ciric, I.E. Grossmann, Automatic synthesis of optimum heat exchanger network configurations, AIChE J. 32(2) (1986) 276-290. [5] T.F. Yee, I.E. Grossmann, Simultaneous optimization models for heat integration-Ⅱ. Heat exchanger network synthesis, Comput. Chem. Eng. 14(10) (1990) 1165-1184. [6] J.J. Klemeš, Z. Kravanja, Forty years of heat integration:Pinch Analysis (PA) and Mathematical Programming (MP), Curr. Opin. Chem. Eng. 2(4) (2013) 461-474. [7] T. Gundersen, L. Naess, The synthesis of cost optimal heat exchanger networks-An industrial review of the state-of -the-art, Heat Recov. Syst. CHP 10(4) (1990) 301-328. [8] M. Morar, P.S. Agachi, Review:Important contributions in development and improvement of the heat integration techniques, Comput. Chem. Eng. 34(8) (2010) 1171-1179. [9] F.V. Lima, Z. Jia, M. Ierapetritou, C. Georgakis, Similarities and differences between the concepts of operability and flexibility:The steady-state case, AIChE J. 56(3) (2010) 702-716. [10] P. Tangnanthanakana, K. Siemanond, Comparison of sequential and simultaneous approaches for multiperiod heat exchanger network synthesis and application for crude preheat train, Chem. Eng. Trans. 39(2014) 199-204. [11] D. Toimil, A. Gomez, Review of metaheuristics applied to heat exchanger network design, Int. Trans. Oper. Res. 24(1-2) (2017) 7-26. [12] B.K. Sreepathi, G.P. Rangaiah, Review of heat exchanger network retrofitting methodologies and their applications, Ind. Eng. Chem. Res. 53(28) (2014) 11205-11220. [13] I.E. Grossmann, D.A. Straub, Recent developments in the evaluation and optimization of fexible chemical processes, Batch Process. Syst. Eng. 143(1996) 495-516. [14] I.E. Grossmann, B.A. Calfa, P. Garcia-Herreros, Evolution of concepts and models for quantifying resiliency and flexibility of chemical processes, Comput. Chem. Eng. 70(2014) 22-34. [15] I.E. Grossmann, R.M. Apap, B.A. Calfa, P. García-Herreros, Q. Zhang, Recent advances in mathematical programming techniques for the optimization of process systems under uncertainty, Comput. Chem. Eng. 91((2016) 3-14. [16] R.L. McGalliard, A.W. Westerberg, Structural sensitivity analysis in design synthesis, Chem. Eng. J. 4(2) (1972) 127-138. [17] R. Ratnam, V.S. Patwardhan, Sensitivity analysis for heat exchanger networks, Chem. Eng. Sci. 46(2) (1991) 451-458. [18] B. Linnhoff, E. Kotjabasakis, Downstream paths for operable process design, Chem. Eng. Prog. 82(5) (1986) 23-28. [19] E. Kotjabasakis, B. Linnhoff, Sensitivity tables for the design of flexible processes (1)-How much contingency in heat exchanger networks is costeffective?, Chem Eng. Res. Des. 64(3) (1986) 197-211. [20] J. Zhu, Z. Han, M. Rao, K.T. Chuang, Identification of heat load loops and downstream paths in heat exchanger networks, Can. J. Chem. Eng. 74(6) (1996) 876-882. [21] G.Q. Li, B. Hua, B.L. Liu, G.R. Wu, Study for flexibility analysis method in heat exchangers network, in:Proceedings of the 2nd Biennial European Joint Conference on Engineering Systems Design and Analysis, American Society of Mechanical Engineers (ASME), London, England, 1994. [22] Z. Jin, D. Wang, X. Wei, Y. Wang, Analysis of heat exchanger network for temperature fluctuation, Adv. Mech. Eng. 7(9) (2015) 1-7. [23] S.A. El-Temtamy, E.M. Gabr, Flexible heat exchanger networks, Chem. Eng. 118(4) (2011) 32-38. [24] R. Farel, A. Bekhradi, Energy efficiency of industrial systems:A design research perspective, in:Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, American Society of Mechanical Engineers (ASME), Buffalo, New York, USA, 2014. [25] S. Papastratos, A. Isambert, D. Depeyre, Computerized optimum design and dynamic simulation of heat exchanger networks, Comput. Chem. Eng. 17(1993) S329-S334. [26] L. Wang, B. Sundén, Detailed simulation of heat exchanger networks for flexibility consideration, Appl. Therm. Eng. 21(12) (2011) 1175-1184. [27] L.O. de Oliveira Filho, E.M. Queiroz, A.L.H. Costa, A matrix approach for steady-state simulation of heat exchanger networks, Appl. Therm. Eng. 27(14-15) (2007) 2385-2393. [28] S.H.A. Bakar, M.K.A. Hamid, S.R.W. Alwi, Z.A. Manan, Sensitivity analysis of industrial heat exchanger network design, Chem. Eng. Trans. 56(2017) 1489-1494. [29] M. Picon Nunez, G.T. Polley, Applying basic understanding of heat exchanger network behaviour to the problem of plant flexibility, Chem. Eng. Res. Des. 73(A8) (1995) 941-952. [30] B. Glemmestad, K.W. Mathisen, T. Gundersen, Optimal operation of heat exchanger networks based on structural information, Comput. Chem. Eng. 20(1996) S823-S828. [31] M. Picón-Núñez, J. Castro-Páez, F. Vizcaíno-García, Steady state simulation for the de-bottlenecking of heat recovery networks, Appl. Therm. Eng. 22(14) (2002) 1673-1687. [32] Z. Varga, I. Rabi, K.K. Stocz, Process simulation for improve energy efficiency, maximize asset utilization and increase in feed flexibility in a crude oil refinery, Chem. Eng. Trans. 21(2010) 1453-1458. [33] X.Ma,P.Yao,X.Luo,R.Wilfried, Synthesisofflexible multi-streamheat exchanger networks based on stream pseudo-temperature with genetic/simulated annealing algorithms, J. Chin. Inst. Chem. Eng. 38(3-4) (2007) 321-331. [34] P. Wang, B. Hua, Y. Qian, An improved approach to the design of flexible heat exchanger networks, Chem. Eng. Technol. 20(5) (1997) 309-312. [35] Y.H. Yang, J.P. Gong, Y.L. Huang, A simplified system model for rapid evaluation of disturbance propagation through a heat exchanger network, Ind. Eng. Chem. Res. 35(12) (1996) 4550-4558. [36] P.J. Heggs, F. Vizcaíno, A rigorous model for evaluation of disturbance propagation through heat exchanger networks, Chem. Eng. Res. Des. 80(3) (2002) 301-308. [37] J. Jezowski, A. Jezowska, Some remarks on heat exchanger networks targeting under uncertainty, Hung. J. Ind. Chem. 27(1) (1999) 17-24. [38] J.M. Jezowski, H.K. Shethna, R.J. Bochenek, F.J.L. Castillo, On extensions of _approaches for heat recovery calculations in integrated chemical process systems, Comput. Chem. 24(5) (2000) 595-601. [39] J. Jezowski, R. Bochenek, A. Jezowska, Pinch locations at heat capacity flowrate disturbances of streams for minimum utility cost heat exchanger networks, Appl. Therm. Eng. 20(15) (2000) 1481-1494. [40] R. Bochenek, J. Jezowski, Adaptive random search approach for retrofitting flexible heat exchanger networks, Hung. J. Ind. Chem. 27(2) (1999) 89-97. [41] J. Persson, T. Berntsson, Influence of seasonal variations on energy-saving opportunities in a pulp mill, Energy 34(10) (2009) 1705-1714. [42] C. Guha, A. Chaudhuri, Transient analysis of heat exchanger network, J. Inst. Eng. India Chem. Eng. Div. 87(2007) 51-59. [43] E.M. Al-Mutairi, O.J. Odejobi, Investigating the thermodynamics and economics of operating the thermal power plant under uncertain conditions, Energy Convers. Manag. 75(2013) 325-335. [44] Y. Li, R.L. Motard, Optimal pinch approach temperature in heat-exchanger networks, Ind. Eng. Chem. Fundam. 25(4) (1986) 577-581. [45] K. Suaysompol, R.M. Wood, Flexible pinch design method for heat exchanger networks. Part I. Heuristic guidelines for free hand designs, Chem. Eng. Res. Des. 69(6) (1991) 458-464. [46] K. Suaysompol, R.M. Wood, Flexible pinch design method for heat exchanger networks. Part Ⅱ FLEXNET. Heuristic searching guided by the A algorithm, Chem. Eng. Res. Des. 69(6) (1991) 465-470. [47] A. Osman, M.I.A. Mutalib, I. Shigidi, Heat recovery enhancement in HENs using a combinatorial approach of paths combination and process streams' temperature flexibility, S. Afr. J. Chem. Eng. 21(2016) 37-48. [48] L. Payet, R. Thery Hétreux, G. Hétreux, F. Bourgeois, P. Floquet, Flexibility assessment of heat exchanger networks:From a thorough data extraction to robustness evaluation, Chem. Eng. Res. Des. 131((2018) 571-583. [49] Y. Wang, M. Pan, I. Bulatov, R. Smith, J.K. Kim, Application of intensified heat transfer for the retrofit of heat exchanger network, Appl. Energy 89(1) (2012) 45-59. [50] N. Jiang, J.D. Shelley, S. Doyle, R. Smith, Heat exchanger network retrofit with a fixed network structure, Appl. Energy 127(2014) 25-33. [51] M.O. Akpomiemie, R. Smith, Retrofit of heat exchanger networks without topology modifications and additional heat transfer area, Appl. Energy 159(2015) 381-390. [52] D.F. Marselle, M. Morari, D.F. Rudd, Design of resilient processing plants-Ⅱ. Design and control of energy management systems, Chem. Eng. Sci. 37(2) (1982) 259-270. [53] M. Morari, Flexibility and resiliency of process systems, Comput. Chem. Eng. 7(4) (1983) 423-437. [54] A.K. Saboo, M. Morari, Design of resilient processing plants-IV:Some new results on heat exchanger network synthesis, Chem. Eng. Sci. 39(3) (1984) 579-592. [55] A.K. Saboo, M. Morari, D.C. Woodcock, Design of resilient processing plants-VⅢ. A resilience index for heat exchanger networks, Chem. Eng. Sci. 40(8) (1985) 1553-1565. [56] A.K. Saboo, M. Morari, R.D. Colberg, Resilience analysis of heat exchanger networks-I. Temperature dependent heat capacities, Comput. Chem. Eng. 11(4) (1987) 399-408. [57] A.K. Saboo, M. Morari, R.D. Colberg, Resilience analysis of heat exchanger networks-Ⅱ. Stream splits and flowrate variations, Comput. Chem. Eng. 11(5) (1987) 457-468. [58] R.D. Colberg, M. Morari, Analysis and synthesis of resilient heat exchanger networks, Adv. Chem. Eng. 14(1988) 1-93. [59] J. Cerdá, M.R. Galli, N. Camussi, M.A. Isla, Synthesis of flexible heat exchanger networks-I. Convex networks, Comput. Chem. Eng. 14(2) (1990) 197-211. [60] J. Cerdá, M.R. Galli, Synthesis of flexible heat exchanger networks-Ⅱ. Nonconvex networks with large temperature variations, Comput. Chem. Eng. 14(2) (1990) 213-225. [61] M.R. Galli, J. Cerdá, Synthesis of flexible heat exchanger networks-Ⅲ. Temperature and flowrate variations, Comput. Chem. Eng. 15(1) (1991) 7-24. [62] N. Aguilera, G. Nasini, Flexibility test for heat exchanger networks with uncertain flowrates, Comput. Chem. Eng. 19(9) (1995) 1007-1017. [63] N.E. Aguilera, G. Nasini, Flexibility test for heat exchanger networks with nonoverlapping inlet temperature variations, Comput. Chem. Eng. 20(10) (1996) 1227-1240. [64] K. Li, B. Niemeyer, Optimal operation of heat exchanger networks under uncertainty, Int. J. Heat Exch. 5(1) (2004) 79-94. [65] R.D. Colberg, M. Morari, D.W. Townsend, A resilience target for heat exchanger network synthesis, Comput. Chem. Eng. 13(7) (1989) 821-837. [66] A.E.S. Konukman, U. Akman, M.C. Camurdan, Optimal design of controllable heat-exchanger networks under multi-directional resiliency-target constraints, Comput. Chem. Eng. 19(Suppl. 1) (1995) 149-154. [67] A.E.S. Konukman, M.C. Camurdan, U. Akman, Simultaneous flexibility targeting and synthesis of minimum-utility heat-exchanger networks with superstructure-based MILP formulation, Chem. Eng. Process. Process Intensif. 41(6) (2002) 501-518. [68] P.P. Chen, J.L. Li, J. Fan, S.H. Hong, J. Du, Synthesis of flexible heat exchanger network with fouling growth, J. East China Univ. Sci. Technol. 39(1) (2013) 51-54. [69] I.E. Grossmann, R.W.H. Sargent, Optimum design of chemical plants with uncertain parameters, AIChE J. 24(6) (1978) 1021-1028. [70] K.P. Halemane, I.E. Grossmann, Optimal process design under uncertainty, AIChE J. 29(3) (1983) 425-433. [71] R.E. Swaney, I.E. Grossmann, An index for operational flexibility in chemical process design. Part I:Formulation and theory, AIChE J. 31(4) (1985) 621-630. [72] C.A. Floudas, I.E. Grossmann, Synthesis of flexible heat exchanger networks with uncertain flowrates and temperatures, Comput. Chem. Eng. 11(4) (1987) 319-336. [73] I.E. Grossmann, C.A. Floudas, Active constraint strategy for flexibility analysis in chemical processes, Comput. Chem. Eng. 11(6) (1987) 675-693. [74] E.N. Pistikopoulos, Uncertainty in process design and operations, Comput. Chem. Eng. 19((1995) 553-563. [75] R.E. Swaney, I.E. Grossmann, An index for operational flexibility in chemical process design. Part Ⅱ:Computational algorithms, AIChE J. 31(1985) 631-641. [76] Z.N. Pintarič, Z. Kravanja, Identification of critical points for the design and synthesis of flexible processes, Comput. Chem. Eng. 32(7) (2008) 1603-1624. [77] G.M. Ostrovsky, Y.M. Volin, E.I. Barit, M.M. Senyavin, Flexibility analysis and optimization of chemical plants with uncertain parameters, Comput. Chem. Eng. 18(8) (1994) 755-767. [78] G.M. Ostrovsky, L.E.K. Achenie, Y. Wang, Y.M. Volin, A new algorithm for computing process flexibility, Ind. Eng. Chem. Res. 39(7) (2000) 2368-2377. [79] C.A. Floudas, Z.H. Gümüs, Global optimization in design under uncertainty:feasibility test and flexibility index problems, Ind. Eng. Chem. Res. 40(20) (2001) 4267-4282. [80] G.M. Ostrovsky, I.V. Datskov, L.E.K. Achenie, Yu.M. Volin, Process uncertainty:Case of insufficient process data at the operation stage, AIChE J. 49(5) (2004) 1216-1232. [81] J. Moon, K. Kulkarni, L. Zhang, A.A. Linninger, Parallel hybrid algorithm for process flexibility analysis, Ind. Eng. Chem. Res. 47(21) (2008) 8324-8336. [82] J. Li, J. Du, Z. Zhao, P. Yao, Efficient method for flexibility analysis of largescale nonconvex heat exchanger networks, Ind. Eng. Chem. Res. 54(43) (2015) 10757-10767. [83] J. Acevedo, E.N. Pistikopoulos, A parametric MINLP algorithm for process synthesis problems under uncertainty, Ind. Eng. Chem. Res. 35(1) (1996) 147-158. [84] H. Jiang, B. Chen, I.E. Grossmann, New algorithm for the flexibility index problem of quadratic systems, AIChE J. 64(7) (2018) 2486-2499. [85] E.N. Pistikopoulos, T.A. Mazzuchi, A novel flexibility analysis approach for processes with stochastic parameters, Comput. Chem. Eng. 14(9) (1990) 991-1000. [86] L. Tantimuratha, G. Asteris, D.K. Antonopoulos, A.C. Kokossis, A conceptual programming approach for the design of flexible hens, Comput. Chem. Eng. 25(4-6) (2001) 887-892. [87] V. Briones, A.C. Kokossis, Hypertargets:a conceptual programming approach for the optimisation of industrial heat exchanger networks-I. Grassroots design and network complexity, Chem. Eng. Sci. 54(4) (1999) 519-539. [88] V. Briones, A.C. Kokossis, Hypertargets:A conceptual programming approach for the optimisation of industrial heat exchanger networks-Ⅱ. Retrofit design, Chem. Eng. Sci. 54(4) (1999) 541-561. [89] V. Briones, A.C. Kokossis, Hypertargets:A conceptual programming approach for the optimisation of industrial heat exchanger networks-Part Ⅲ. Industrial applications, Chem. Eng. Sci. 54(5) (1999) 685-706. [90] L. Tantimuratha, A.C. Kokossis, Flexible energy management and heat exchanger network design, Ann. Oper. Res. 132(1-4) (2004) 277-300. [91] Y.L. Tan, D.K.S. Ng, M.M. El-Halwagi, D.C.Y. Foo, Y. Samyudia, Floating pinch method for utility targeting in heat exchanger network (HEN), Chem. Eng. Res. Des. 92(1) (2014) 119-126. [92] Y.L. Tan, D.K.S. Ng, D.C.Y. Foo, M.M. El-Halwagi, Y. Samyudia, Heat integrated resource conservation networks without mixing prior to heat exchanger networks, J. Clean. Prod. 71(2014) 128-138. [93] C.L. Chen, P.S. Hung, Multicriteria synthesis of flexible heat-exchanger networks with uncertain source-stream temperatures, Chem. Eng. Process. Process Intensif. 44(1) (2005) 89-100. [94] E.N. Pistikopoulos, I.E. Grossmann, Optimal retrofit design for improving process flexibility in nonlinear systems-I. Fixed degree of flexibility, Comput. Chem. Eng. 13(9) (1989) 1003-1016. [95] Z.N. Pintarič, Z. Kravanja, A methodology for the synthesis of heat exchanger networks having large numbers of uncertain parameters, Energy 92(2015) 373-382. [96] Y. Bai, L. Liu, S. Gu, J. Du, Synthesis of flexible heat exchanger networks considering fouling resistance, Chem. Eng. Trans. 61(2017) 511-516. [97] X.L. Zhang, H.C. Yin, Z.Y. Huo, Flexible synthesis of heat exchanger network with particle swarm optimization algorithm, Adv. Mater. Res. 214(2011) 569-572. [98] J. Li, J. Du, Z. Zhao, P. Yao, Structure and area optimization of flexible heat exchanger networks, Ind. Eng. Chem. Res. 53(29) (2014) 11779-11793. [99] H. Nishitani, Y. Kutsuwa, K. Shimizu, E. Kunugita, Design of heat exchanger network with uncertainty in overall heat transfer coefficients, J. Chem. Eng. Jpn 21(4) (1988) 375-381. [100] H. Nishitani, K. Shimizu, E. Kunugita, Optimal design of heat exchanger network with a large number of uncertain parameters, Electr. Eng. Jpn. 109(3) (1989) 118-129. [101] Z.N.Pintarič,Z.Kravanja,Thetwo-levelstrategyforMINLPsynthesisofprocess flowsheets under uncertainty, Comput. Chem. Eng. 24(2) (2000) 195-201. [102] W.C. Rooney, L.T. Biegler, Incorporating joint confidence regions into design under uncertainty, Comput. Chem. Eng. 23(10) (1999) 1563-1575. [103] K. Zheng, H.H. Lou, J. Wang, F. Cheng, A method for flexible heat exchanger network design under severe operation uncertainty, Chem. Eng. Technol. 36(5) (2013) 757-765. [104] E.N. Pistikopoulos, M.G. Ierapetritou, Novel approach for optimal process design under uncertainty, Comput. Chem. Eng. 19(10) (1995) 1089-1110. [105] Z.N. Pintarič, Z. Kravanja, A strategy for MINLP synthesis of flexible and operable processes, Comput. Chem. Eng. 28(6-7) (2004) 1105-1119. [106] Z.N. Pintarič, Z. Kravanja, Identification of vertex and nonvertex critical points for large-scale approximate stochastic optimization, Comput. Aided Chem. Eng. 20(2005) 91-96. [107] Z.N. Pintarič, M. Kasaš, Z. Kravanja, Sensitivity analyses for scenario reduction in flexible flow sheet design with a large number of uncertain parameters, AIChE J. 59(8) (2013) 2862-2871. [108] L.V. Pavão, C. Pozo, C.B.B. Costa, M.A.S.S. Ravagnani, L. Jiménez, Financial risks management of heat exchanger networks under uncertain utility costs via multi-objective optimization, Energy 139(2017) 98-117. [109] L.V.Pavão,C.Pozo-Fernandez,L.Jiménez,M.A.S.S.Ravagnani,C.B.B.Costa,Financial riskmanagementinheatexchangernetworksconsideringmultipleutility sources with uncertain costs, Ind. Eng. Chem. Res. 57(30) (2018) 9831-9848. [110] C.A. Floudas, I.E. Grossmann, Synthesis of flexible heat exchanger networks for multiperiod operation, Comput. Chem. Eng. 10(2) (1986) 153-168. [111] C.A. Floudas, I.E. Grossmann, Automatic generation of multiperiod heat exchanger network configurations, Comput. Chem. Eng. 11(2) (1987) 123-142. [112] I.B. Lee, Toward the synthesis of global optimum heat exchanger networks under multiple-periods of operation, Korean J. Chem. Eng. 8(2) (1991) 95-104. [113] M. Bagajewicz, J. Soto, Rigorous procedure for the design of conventional atmospheric crude fractionation units. Part Ⅱ:Heat exchanger network, Ind. Eng. Chem. Res. 40(2) (2001) 627-634. [114] S. Ji, M. Bagajewiez, Design of crude distillation plants with vacuum units. Ⅱ. Heat exchanger network design, Ind. Eng. Chem. Res. 41(24) (2002) 6100-6106. [115] A. Mian, E. Martelli, F. Maréchal, Framework for the multiperiod sequential synthesis of heat exchanger networks with selection, design, and scheduling of multiple utilities, Ind. Eng. Chem. Res. 55(1) (2016) 168-186. [116] C.B. Miranda, C.B.B. Costa, J.A. Caballero, M.A.S.S. Ravagnani, Optimal synthesis of multiperiod heat exchanger networks:A sequential approach, Appl. Therm. Eng. 115(2017) 1187-1202. [117] L. Čuček, Z. Kravanja, Retrofitting of large-scale heat exchanger networks within total sites under uncertainty by considering trade-offs between investment and operating cost, Chem. Eng. Trans. 45(2015) 1723-1728. [118] L. Čuček, Z. Kravanja, A procedure for the retrofitting of large-scale heat exchanger networks for fixed and flexible designs, Chem. Eng. Trans. 45(2015) 31-36. [119] K.P. Papalexandri, E.N. Pistikopoulos, A multiperiod minlp model for improving the flexibility of heat exchanger networks, Comput. Chem. Eng. 17(1993) S111-S116. [120] K.P. Papalexandri, E.N. Pistikopoulos, An MINLP retrofit approach for improving the flexibility of heat exchanger networks, Ann. Oper. Res. 42(1) (1993) 119-168. [121] K.P. Papalexandri, E.N. Pistikopoulos, A multiperiod MINLP model for the synthesis of flexible heat and mass exchange networks, Comput. Chem. Eng. 18(11-12) (1994) 1125-1139. [122] J. Aaltola, Simultaneous synthesis of flexible heat exchanger network, Appl. Therm. Eng. 22(8) (2002) 907-918. [123] C.L. Chen, P.S. Hung, Simultaneous synthesis of flexible heat-exchange networks with uncertain source-stream temperatures and flowrates, Ind. Eng. Chem. Res. 43(18) (2004) 5916-5928. [124] W. Verheyen, N. Zhang, Design of flexible heat exchanger network for multiperiod operation, Chem. Eng. Sci. 61(23) (2006) 7730-7753. [125] A. Nemet, J.J. Klemeš, Z. Kravanja, Minimisation of a heat exchanger networks' cost over its lifetime, Energy 45(1) (2012) 264-276. [126] A. Nemet, J.J. Klemeš, Z. Kravanja, Optimising entire lifetime economy of heat exchanger networks, Energy 57(2013) 222-235. [127] A. Nemet, J.J. Klemeš, Z. Kravanja, Heat exchanger network synthesis considering risk assessment for entire network lifetime, Chem. Eng. Trans. 57(2017) 307-312. [128] K.P. Papalexandri, E.N. Pistikopoulos, B. Kalitventzeff, Modelling and optimization aspects in energy management and plant operation with variable energy demands-application to industrial problems, Comput. Chem. Eng. 22(9) (1998) 1319-1333. [129] N.Z. Pintaric, Z. Kravanja, Multiperiod investment models for the gradual reconstruction of chemical processes, Chem. Eng. Technol. 30(12) (2007) 1622-1632. [130] J. Ma, X. Chen, C. Chang, Y. Wang, X. Feng, Simultaneous synthesis of multiperiod heat exchanger networks for multi-plant heat integration, Chem. Eng. Trans. 61(2017) 757-762. [131] J.A. Francesconi, D.G. Oliva, P.A. Aguirre, Flexible heat exchanger network design of an ethanol processor for hydrogen production. A model-based multi-objective optimization approach, Int. J. Hydrog. Energy 42(5) (2017) 2736-2747. [132] X. Ma, P. Yao, X. Luo, W. Roetzel, Synthesis of multi-stream heat exchanger network for multi-period operation with genetic/simulated annealing algorithms, Appl. Therm. Eng. 28(8-9) (2008) 809-823. [133] M. Short, A.J. Isafiade, D.M. Fraser, Z. Kravanja, Two-step hybrid approach for the synthesis of multi-period heat exchanger networks with detailed exchanger design, Appl. Therm. Eng. 105(2016) 807-821. [134] J. Timmerman, M. Hennen, A. Bardow, P. Lodewijks, L. Vandevelde, G. Van Eetvelde, Towards low carbon business park energy systems:A holistic techno-economic optimisation model, Energy 125(2017) 747-770. [135] A.J. Isafiade, M. Short, M. Bogataj, Z. Kravanja, Integrating renewables into multi-period heat exchanger network synthesis considering economics and environmental impact, Comput. Chem. Eng. 99(2017) 51-65. [136] S.M. Lai, H. Wu, C.W. Hui, B. Hua, G. Zhang, Flexible heat exchanger network design for low-temperature heat utilization in oil refinery, Asia Pac. J. Chem. Eng. 6(5) (2011) 713-733. [137] F. Friedler, P. Varbanov, J. Klemeš, Advanced HENs design for multi-period operation using P-graph, Chem. Eng. Trans. 18(2009) 457-462. [138] M. Escobar, J.O. Trierweiler, I.E. Grossmann, A heuristic Lagrangean approach for the synthesis of multiperiod heat exchanger networks, Appl. Therm. Eng. 63(1) (2014) 177-191. [139] D.K. Varvarezos, L.T. Biegler, I.E. Grossmann, Multiperiod design optimization with SQP decomposition, Comput. Chem. Eng. 18(7) (1994) 579-595. [140] B.J. Zhang, Q.L. Chen, S. Hu, W.G. Gu, C.W. Hui, Simultaneous optimization of energy and materials based on heat exchanger network simulation for diesel hydrotreating units, Chem. Eng. Res. Des. 88(5-6) (2010) 513-519. [141] M.I. Ahmad, N. Zhang, M. Jobson, L. Chen, Multi-period design of heat exchanger networks, Chem. Eng. Res. Des. 90(11) (2012) 1883-1895. [142] G.P. Silva, C.B. Miranda, E.P. Carvalho, M.A.S.S. Ravagnani, A simultaneous approach for the synthesis of multiperiod heat exchanger network using particle swarm optimization, Can. J. Chem. Eng. 96(5) (2018) 1142-1155. [143] C.M. Oliveira, L.V. Pavão, M.A.S.S. Ravagnani, A.J.G. Cruz, C.B.B. Costa, Process integration of a multiperiod sugarcane biorefinery, Appl. Energy 213(2018) 520-539. [144] L.V. Pavão, C.B. Miranda, C.B.B. Costa, M.A.S.S. Ravagnani, Efficient multiperiod heat exchanger network synthesis using a meta-heuristic approach, Energy 142(2018) 356-372. [145] A.J. Isafiade, D.M. Fraser, Interval based MINLP superstructure synthesis of heat exchanger networks for multi-period operations, Chem. Eng. Res. Des. 88(10) (2010) 1329-1341. [146] L. Kang, Y. Liu, J. Hou, Synthesis of multi-period heat exchanger network considering characteristics of sub-periods, Chem. Eng. Trans. 45(2015) 49-54. [147] A.J. Isafiade, M. Short, Simultaneous synthesis of flexible heat exchanger networks for unequal multi-period operations, Process. Saf. Environ. Prot. 103((2016) 377-390. [148] L. Kang, Y. Liu, L. Wu, Synthesis of multi-period heat exchanger networks based on features of sub-period durations, Energy 116(2016) 1302-1311. [149] A.J. Isafiade, M. Bogataj, D. Fraser, Z. Kravanja, Optimal synthesis of heat exchanger networks for multi-period operations involving single and multiple utilities, Chem. Eng. Sci. 127(2015) 175-188. [150] E. Sadeli, C.T. Chang, Heuristic approach to incorporate timesharing schemes in multiperiod heat exchanger network designs, Ind. Eng. Chem. Res. 51(23) (2012) 7967-7987. [151] D. Jiang, C.T. Chang, A new approach to generate flexible multiperiod heat exchanger network designs with timesharing mechanisms, Ind. Eng. Chem. Res. 52(10) (2013) 3794-3804. [152] D. Jiang, C.T. Chang, An algorithmic approach togenerate timesharing schemes for multi-period HEN designs, Chem. Eng. Res. Des. 93(2015) 402-410. [153] C.B. Miranda, C.B.B. Costa, J.A. Caballero, M.A.S.S. Ravagnani, Heat exchanger network optimization for multiple period operations, Ind. Eng. Chem. Res. 55(39) (2016) 10301-10315. [154] L.V. Pavão, C.B. Miranda, C.B.B. Costa, M.A.S.S. Ravagnani, Synthesis of multiperiod heat exchanger networks with timesharing mechanisms using meta-heuristics, Appl. Therm. Eng. 128(2018) 637-652. [155] L. Kang, Y. Liu, Retrofit of heat exchanger networks for multiperiod operations by matching heat transfer areas in reverse order, Ind. Eng. Chem. Res. 53(12) (2014) 4792-4804. [156] L. Kang, Y. Liu, Target-oriented methodology on matching heat transfer areas for a multiperiod heat exchanger network retrofit, Ind. Eng. Chem. Res. 53(45) (2014) 17753-17769. [157] L. Kang, Y. Liu, Minimizing investment cost for multi-period heat exchanger network retrofit by matching heat transfer areas with different strategies, Chin. J. Chem. Eng. 23(7) (2015) 1153-1160. [158] L. Kang, Y. Liu, A systematic strategy for multi-period heat exchanger network retrofit under multiple practical restrictions, Chin. J. Chem. Eng. 25(8) (2017) 1043-1051. [159] D. Zhang, P. Wang, G. Liu, A novel sensitivity analysis method for the energy consumption of coupled reactor and heat exchanger network system, Energy Fuels 32(6) (2018) 7210-7219. [160] B.J. Zhang, X.L. Luo, K. Liu, Q.L. Chen, W. Li, Simultaneous target of HEN and columns with variable feed temperatures for a toluene disproportionation plant, Ind. Eng. Chem. Res. 53(25) (2014) 10429-10438. [161] D.Zhang,G.Liu,Integrationofheatexchangernetworkconsideringthepressure variation of distillation column, Appl. Therm. Eng. 116(2017) 777-783. [162] V.S.K. Adi, C.T. Chang, A mathematical programming formulation for temporal flexibility analysis, Comput. Chem. Eng. 57(2013) 151-158. [163] V.D. Dimitriadis, E.N. Pistikopoulos, Flexibility analysis of dynamic systems, Ind. Eng. Chem. Res. 34(1995) 4451-4462. [164] S. Gu, L. Liu, Y. Bai, J. Zhang, J. Du, Heat exchanger networks synthesis considering dynamic flexibility, Chem. Eng. Trans. 61(2017) 199-204. [165] L. Kang, Y. Liu, Design of flexible multiperiod heat exchanger networks with debottlenecking in subperiods, Chem. Eng. Sci. 185(2018) 116-126. [166] S. Bungener, R. Hackl, G. Van Eetvelde, S. Harvey, F. Marechal, Multi-period analysis of heat integration measures in industrial clusters, Energy 93(1) (2015) 220-234. [167] R.M. Apap, I.E. Grossmann, Models and computational strategies for multistage stochastic programming under endogenous and exogenous uncertainties, Comput. Chem. Eng. 103(2017) 233-274. |
[1] | Siwen Gu, Lei Zhang, Yu Zhuang, Weida Li, Jian Du, Cheng Shao. Two-tier control structure design methodology applied to heat exchanger networks[J]. 中国化学工程学报, 2022, 47(7): 231-244. |
[2] | Wenhui Yang, Haoyu Yin, Zhihong Yuan, Bingzhen Chen. Flexibility analysis for continuous ibuprofen manufacturing processes[J]. 中国化学工程学报, 2022, 51(11): 115-125. |
[3] | Wende Tian, Haoran Zhang, Zhe Cui, Xiude Hu. Mechanism analysis and simulation of methyl methacrylate production coupled chemical looping gasification system[J]. 中国化学工程学报, 2021, 37(9): 184-196. |
[4] | Yu Zhuang, Rui Yang, Lei Zhang, Jian Du, Shengqiang Shen. Simultaneous synthesis of sub and above-ambient heat exchanger networks including expansion process based on an enhanced superstructure model[J]. 中国化学工程学报, 2020, 28(5): 1344-1356. |
[5] | Siwen Gu, Linlin Liu, Lei Zhang, Yiyuan Bai, Shaojing Wang, Jian Du. Heat exchanger network synthesis integrated with flexibility and controllability[J]. 中国化学工程学报, 2019, 27(7): 1474-1484. |
[6] | Lijing Zang, Kejin Huang, Ting Guo, Yang Yuan, Haisheng Chen, Liang Zhang, Xing Qian, Shaofeng Wang. Temperature inferential control of a reactive distillation column with double reactive sections[J]. 中国化学工程学报, 2019, 27(4): 896-904. |
[7] | Abbas Hemmati, Hamed Rashidi. Mass transfer investigation and operational sensitivity analysis of aminebased industrial CO2 capture plant[J]. Chinese Journal of Chemical Engineering, 2019, 27(3): 534-543. |
[8] | Li Xia, Yuanli Feng, Xiaoyan Sun, Shuguang Xiang. Design of heat exchanger network based on entransy theory[J]. Chinese Journal of Chemical Engineering, 2018, 26(8): 1692-1699. |
[9] | Qi Chen, Jintao Sun, Xiaojun Zhang. Kinetic contribution of CO2/O2 additive in methane conversion activated by non-equilibrium plasmas[J]. Chinese Journal of Chemical Engineering, 2018, 26(5): 1041-1050. |
[10] | Lixia Kang, Yongzhong Liu. A systematic strategy for multi-period heat exchanger network retrofit under multiple practical restrictions[J]. , 2017, 25(8): 1043-1051. |
[11] | Jianqiang Deng, Zheng Cao, Dongbo Zhang, Xiao Feng. Integration of energy recovery network including recycling residual pressure energy with pinch technology[J]. , 2017, 25(4): 453-462. |
[12] | Lixia Kang, Yongzhong Liu. Minimizing investment cost for multi-period heat exchanger network retrofit by matching heat transfer areas with different strategies[J]. Chinese Journal of Chemical Engineering, 2015, 23(7): 1153-1160. |
[13] | Lianfang Cai, Xuemin Tian . A new process monitoring method based on noisy time structure independent component analysis[J]. Chinese Journal of Chemical Engineering, 2015, 23(1): 162-172. |
[14] | 罗祎青, 冯胜科, 孙长江, 袁希钢. A Two-step Design Method for Shaft Work Targeting on Low-temperature Process[J]. Chinese Journal of Chemical Engineering, 2014, 22(6): 664-668. |
[15] | 依大科, 韩志忠, 王克峰, 姚平经. Strategy for Synthesis of Flexible Heat Exchanger Networks Embedded with System Reliability Analysis[J]. Chinese Journal of Chemical Engineering, 2013, 21(7): 742-753. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||