[1] S. Stubbs, J. Zhang, J.Morris, Fault detection in dynamic processes using a simplified monitoring-specific CVA state spacemodeling approach, Comput. Chem. Eng. 41 (11) (2012) 77-87.[2] L. Ye, X. Shi, J. Liang, A multi-level approach for complex fault isolation based on structured residuals, Chin. J. Chem. Eng. 19 (3) (2011) 462-472.[3] J. Yu, Localized fisher discriminant analysis based complex chemical process monitoring, AICHE J. 57 (7) (2011) 1817-1828.[4] Z.B. Zhu, Z.H. Song, A. Palazoglu, Process pattern construction and multi-mode monitoring, J. Process Control 22 (1) (2012) 247-262.[5] I.B. Khediri, M. Limam, C. Weihs, Variable window adaptive kernel principal component analysis for nonlinear nonstationary process monitoring, Comput. Ind. Eng. 61 (3) (2011) 437-446.[6] C.F. Alcala, S.J. Qin, Reconstruction-based contribution for process monitoring with kernel principal component analysis, Ind. Eng. Chem. Res. 49 (17) (2010) 7849-7857.[7] Z.F. Wang, J.Q. Yuan, Online supervision of penicillin cultivations based on rolling MPCA, Chin. J. Chem. Eng. 15 (1) (2007) 92-96.[8] X. Liu, U. Kruger, T. Littler, L. Xie, S.Wang, Moving window kernel PCA for adaptive monitoring of nonlinear process, Chemom. Intell. Lab. Syst. 96 (2) (2009) 132-143.[9] J.M. Lee, S.J. Qin, I.B. Lee, Fault detection and diagnosis of multivariate process based on modified independent component analysis, AICHE J. 52 (10) (2006) 3501-3514.[10] J. Yu, A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical process, Chem. Eng. Sci. 68 (1) (2012) 506-519.[11] Y.W. Zhang, Y. Zhang, Fault detection of non-Gaussian processes based on modified independent component analysis, Chem. Eng. Sci. 65 (16) (2010) 4630-4639.[12] L.F. Cai, X.M. Tian, N. Zhang, Process fault detection method using time-structure KICA and OCSVM, J. Tsinghua Univ. (Sci. Technol.) 52 (9) (2012) 1205-1209 (in Chinese).[13] C.C. Hsu, M.C. Chen, L.S. Chen, Intelligent ICA-SVM fault detector for non-Gaussian multivariate process monitoring, Expert Syst. Appl. 37 (4) (2010) 3264-3273.[14] M. Kano, S. Tanaka, S. Hasebe, I. Hashimoto, Monitoring independent components for fault detection, AICHE J. 49 (4) (2003) 969-976.[15] J.M. Lee, C.K. Yoo, I.B. Lee, Statistical process monitoring with independent component analysis, J. Process Control 14 (5) (2004) 467-485.[16] G. Stefatos, A.B. Hamza, Dynamic independent component analysis approach for fault detection and diagnosis, Expert Syst. Appl. 37 (12) (2010) 8606-8617.[17] P.P. Odiowei, Y. Cao, State-space independent component analysis for nonlinear dynamic process monitoring, Chemom. Intell. Lab. Syst. 103 (1) (2010) 59-65.[18] X.M. Tian, X.L. Zhang, X.G. Deng, S. Chen, Multiway kernel independent component analysis based on feature samples for batch process monitoring, Neurocomputing 72 (7) (2009) 1584-1596.[19] L.F. Cai, X.M. Tian, N. Zhang, Non-Gaussian process fault detection method based on modified KICA, CIESC J. 63 (9) (2012) 2864-2868 (in Chinese).[20] Y.W. Zhang, J.Y. An, H.L. Zhang, Monitoring of time-varying processes using kernel independent component analysis, Chem. Eng. Sci. 88 (2013) 23-32.[21] M.M. Rashid, J. Yu, Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection, Ind. Eng. Chem. Res. 51 (15) (2012) 5506-5514.[22] A. Hyvärinen, Fast and robust fixed-point algorithms for independent component analysis, IEEE Trans. Neural Netw. 10 (3) (1999) 626-634.[23] D.Wang, Robust data-driven modeling approach for real-time final product quality prediction in batch process operation, IEEE Trans. Ind. Inf. 7 (2) (2011) 371-377.[24] Z.Q. Ge, Z.H. Song, PICA based process monitoring method, CIESC J. 59 (7) (2008) 1665-1670 (in Chinese).[25] X.D. Zhang, Time Series Analysis—High Order StatisticsMethod, Tsinghua University Press, Beijing, 1996. 20-24 (in Chinese).[26] H.H. Yang, S.I. Amari, Adaptive on-line learning algorithms for blind separationmaximum entropy and minimum mutual information, Neural Comput. 9 (7) (1997) 1457-1482.[27] E.L. Russell, L.H. Chiang, R.D. Braatz, Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis, Chemom. Intell. Lab. Syst. 51 (1) (2000) 81-93.[28] L. Petzold, S. Li, Y. Cao, R. Serban, Sensitivity analysis of differential-algebraic equations and partial differential equations, Comput. Chem. Eng. 30 (10-12) (2006) 1553-1559.[29] W. Lu, J.C. Rajapakse, Approach and applications of constrained ICA, IEEE Trans. Neural Netw. 16 (1) (2005) 203-212.[30] X.G. Deng, X.M. Tian, Sparse kernel locality preserving projection and its application in nonlinear process fault detection, Chin. J. Chem. Eng. 21 (2) (2013) 163-170.[31] M.C. Johannesmeyer, A. Singhal, D.E. Seborg, Pattern matching in historical data, AICHE J. 48 (9) (2002) 2022-2038.[32] S. Mahadevan, S.L. Shah, Fault detection and diagnosis in process data using oneclass support vector machines, J. Process Control 19 (10) (2009) 1627-1639.[33] J.C. Wang, Y.B. Zhang, H. Cao, W.Z. Zhu, Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error, J. Process Control 22 (2) (2012) 477-487. |