[1] J. Davis, T. Edgar, J. Porter, J. Bernaden,M. Sarli, Smartmanufacturing,manufacturing intelligence and demand-dynamic performance, Comput. Chem. Eng. 47(2012) 145-156.[2] EFFRA, Factories of the future:Multi-annual roadmap for the contractual PPP under horizon 2020, 2013.[3] P.M. Frank, Fault diagnosis in dynamic systems using analytical and knowledgebased redundancy:A survey and some new results, Automatica 26(1990) 459-474.[4] R. Isermann, Model-based fault-detection and diagnosis-Status and applications, Annu. Rev. Control. 29(2005) 71-85.[5] V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, K. Yin, A review of process fault detection and diagnosis:Part III:Process history based methods, Comput. Chem. Eng. 27(2003) 327-346.[6] S. Wold, K. Esbensen, P. Geladi, Principal component analysis, Chemom. Intell. Lab. Syst. 2(1987) 37-52.[7] I. Jolliffe, Principal component analysis, Wiley Online Library, 2002.[8] U. Kruger, S. Kumar, T. Littler, Improved principal component monitoring using the local approach, Automatica 43(2007) 1532-1542.[9] Z. Li, U. Kruger, X. Wang, L. Xie, An error-in-variable projection to latent structure framework for monitoring technical systems with orthogonal signal components, Chemom. Intell. Lab. Syst. 133(2014) 70-83.[10] K. Liu, X. Jin, Z. Fei, J. Liang, Adaptive partitioning PCA model for improving fault detection and isolation, Chin. J. Chem. Eng. 23(2015) 981-991.[11] W. Ku, R.H. Storer, C. Georgakis, Disturbance detection and isolation by dynamic principal component analysis, Chemom. Intell. Lab. Syst. 30(1995) 179-196.[12] B.R. Bakshi, Multiscale PCA with application to multivariate statistical process monitoring, AICHE J. (1998).[13] J. Gertler, J. Cao, PCA-based fault diagnosis in the presence of control and dynamics, AICHE J. 50(2004) 388-402.[14] M. Misra, H.H. Yue, S.J. Qin, C. Ling, Multivariate process monitoring and fault diagnosis by multi-scale PCA, Comput. Chem. Eng. 26(2002) 1281-1293.[15] W. Sun, A. Palazo?lu, J.A. Romagnoli, Detecting abnormal process trends bywaveletdomain hidden Markov models, AICHE J. 49(2003) 140-150.[16] A. Kassidas, P.A. Taylor, J.F. MacGregor, Off-line diagnosis of deterministic faults in continuous dynamic multivariable processes using speech recognition methods, J. Process Control 8(1998) 381-393.[17] W. Li, S.J. Qin, Consistent dynamic PCA based on errors-in-variables subspace identification, J. Process Control 11(2001) 661-678.[18] R.J. Treasure, U. Kruger, J.E. Cooper, Dynamic multivariate statistical process control using subspace identification, J. Process Control 14(2004) 279-292.[19] C. Cheng, M.-S. Chiu, Nonlinear process monitoring using JITL-PCA, Chemom. Intell. Lab. Syst. 76(2005) 1-13.[20] A. Negiz, A. Çlinar, Statistical monitoring of multivariable dynamic processes with state-space models, AIChE J. 43(1997) 2002-2020.[21] S. Yoon, J.F. MacGregor, Principal-component analysis of multiscale data for process monitoring and fault diagnosis, AIChE J. 50(2004) 2891-2903.[22] G. Li, S.J. Qin, D. Zhou, A new method of dynamic latent-variable modeling for process monitoring, IEEE Trans. Ind. Electron. 61(2014) 6438-6445.[23] W.C. Sang, H.P. Jin, I.B. Lee, Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis, Comput. Chem. Eng. 28(2004) 1377-1387.[24] Z. Li, H. Fang, L. Xia, Increasing mapping based hidden Markov model for dynamic process monitoring and diagnosis, Expert Syst. Appl. 41(2014) 744-751.[25] J. Zhu, Z. Ge, Z. Song, HMM-driven robust probabilistic principal component analyzer for dynamic process fault classification, IEEE Trans. Ind. Electron. 62(2015) 1-1.[26] K.-J. Yoon, I.S. Kweon, Adaptive support-weight approach for correspondence search, 2006.[27] X. Niyogi, Locality preserving projections. In Neural information processing systems, MIT, 2004.[28] S.Wold, Exponentially weighted moving principal components analysis and projections to latent structures, Chemom. Intell. Lab. Syst. 23(1994) 149-161.[29] Q. Jiang, X. Yan, Chemical processes monitoring based on weighted principal component analysis and its application, Chemom. Intell. Lab. Syst. 119(2012) 11-20.[30] P. Nomikos, J.F. MacGregor, Multivariate SPC charts for monitoring batch processes, Technometrics 37(1995) 41-59.[31] Q. Chen, U. Kruger, A.T. Leung, Regularised kernel density estimation for clustered process data, Control. Eng. Pract. 12(2004) 267-274.[32] Q. Chen, R. Wynne, P. Goulding, D. Sandoz, The application of principal component analysis and kernel density estimation to enhance process monitoring, Control. Eng. Pract. 8(2000) 531-543.[33] T.H. Cormen, Introduction to algorithms, MIT Press, 2009.[34] J.J. Downs, E.F. Vogel, A plant-wide industrial process control problem, Comput. Chem. Eng. 17(1993) 245-255.[35] S. Yin, S.X. Ding, A. Haghani, H. Hao, P. Zhang, A comparison study of basic datadriven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process, J. Process Control 22(2012) 1567-1581.[36] P.R. Lyman, C. Georgakis, Plant-wide control of the Tennessee Eastman problem, Comput. Chem. Eng. 19(1995) 321-331. |