[1] H.F. Stich, The beneficial and hazardous effects of simple phenolic compounds, Mutat. Res. Genet. Toxicol. 259(3-4) (1991) 307-324.[2] U. Beker, B. Ganbold, H. Dertli, D.D. Gülbayir, Adsorption of phenol by activated carbon: Influence of activation methods and solution pH, Energy Convers. Manag. 51(2) (2010) 235-240.[3] N.K. Sharma, L. Philip, Effect of cyanide on phenolics and aromatic hydrocarbons biodegradation under anaerobic and anoxic conditions, Chem. Eng. J. 256(2014) 255-267.[4] J. Jiang, Y. Gao, S.Y. Pang, X.T. Lu, Y. Zhou, J. Ma, Q.Wang, Understanding the role of manganese dioxide in the oxidation of phenolic compounds by aqueous permanganate, Environ. Sci. Technol. 49(1) (2015) 520-528.[5] N. Babazadeh, A. Sadeghipour, A.H. Colagar, Ammonium sulphate precipitation increases phenolics removal by PVP and PVPP from a crude protease preparation of sunflower seedlings, Clin. Biochem. 44(13, Supplement) (2011) S248-S249.[6] Z.M. Ahmed, S. Lyne, R. Shahrabani, Removal and recovery of phenol from phenolic wastewater via ion exchange and polymeric resins, Environ. Eng. Sci. 17(5) (2000) 245-255.[7] T.T. Garmus, L.C. Paviani, C.L. Queiroga, F.A. Cabral, Extraction of phenolic compounds from pepper-rosmarin (Lippia sidoides Cham.) leaves by sequential extraction in fixed bed extractor using supercritical CO2, ethanol and water as solvents, J. Supercrit. Fluids 99(2015) 68-75.[8] R.T. Yang, Adsorbents: Fundamentals and applications, John Wiley and Sons Inc., New York, 2003.[9] G.P. Wu, S.H. Chen, R.E. Levin, Rapid real-time loop-mediated isothermal amplification combined with coated activated carbon for detection of low numbers of Salmonella enterica from lettuce without enrichment, Food Control 56(2015) 47-52.[10] M.M. Vuk?evi?, A.M. Kalijadis, T.M. Vasiljevi?, B.M. Babi?, Z.V. Lauševi?, M.D. Lauševi?, Production of activated carbon derived from waste hemp (Cannabis sativa) fibers and its performance in pesticide adsorption, Microporous Mesoporous Mater. 214(2015) 156-165.[11] B.X. Shen, J.H. Chen, S.J. Yue, G.L. Li, A comparative study of modified cotton biochar and activated carbon based catalysts in low temperature SCR, Fuel 156(2015) 47-53.[12] J.-W. Park, C. Kim, H.-S. Ryu, G.-B. Cho, K.-K. Cho, K.-W. Kim, J.-H. Ahn, G.X.Wang, J.-P. Ahn, H.-J. Ahn, Effect of sulfur content in a sulfur-activated carbon composite on the electrochemical properties of a lithium/sulfur battery, Mater. Res. Bull. 69(2015) 24-28.[13] R.D. Vidic, C.H. Tessmer, L.J. Uranowski, Impact of surface properties of activated carbons on oxidative coupling of phenolic compounds, Carbon 35(9) (1997) 1349-1359.[14] E. Lorenc-Grabowska, G. Gryglewicz, M.A. Diez, Kinetics and equilibrium study of phenol adsorption on nitrogen-enriched activated carbons, Fuel 114(2013) 235-243.[15] C.J. Liu, X.Y. Liang, X.J. Liu, Q. Wang, N. Teng, L. Zhan, R. Zhang, W.M. Qiao, L.C. Ling, Wettability modification of pitch-based spherical activated carbon by air oxidation and its effects on phenol adsorption, Appl. Surf. Sci. 254(9) (2008) 2659-2665.[16] D.D. Do, Adsorption analysis: Equilibria and kinetics, Imperial College Press, London, 1998142-147.[17] G.G. Stavropoulos, P. Samaras, G.P. Sakellaropoulos, Effect of activated carbonsmodification on porosity, surface structure and phenol adsorption, J. Hazard. Mater. 151(2-3) (2008) 414-421.[18] R. Subha, C. Namasivayam, Kinetics and isotherm studies for the adsorption of phenol using low cost micro porous ZnCl2 activated coir pith carbon, Can. J. Civ. Eng. 36(1) (2009) 148-159.[19] Y. Sun, J. Wei, Y.S. Wang, G. Yang, J.P. Zhang, Production of activated carbon by K2CO3 activation treatment of cornstalk lignin and its performance in removing phenol and subsequent bioregeneration, Environ. Technol. 31(1) (2010) 53-61.[20] S. Altenor, B. Carene, E. Emmanuel, J. Lambert, J.J. Ehrhardt, S. Gaspard, Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation, J. Hazard. Mater. 165(1-3) (2009) 1029-1039.[21] V.V. Strelko, P.A. Kuts, V.S. Thrower, On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions, Carbon 38(10) (2000) 1499-1503.[22] J. Przepiorski, Enhanced adsorption of phenol from water by ammonia-treated activated carbon, J. Hazard. Mater. 135(1-3) (2006) 453-456.[23] J. Zhang, X.J. Jin, J.M. Gao, X.D. Zhang, Phenol adsorption on nitrogen-enriched activated carbon prepared from bamboo residues, Bioresources 9(1) (2014) 969-983.[24] B.B. Gathitu, W.-Y. Chen, M. McClure, Effects of coal interaction with supercritical CO2: physical structure, Ind. Eng. Chem. Res. 48(10) (2009) 5024-5034.[25] H.S. Teng, C.T. Hsieh, Influence of surface characteristics on liquid-phase adsorption of phenol by activated carbons prepared from bituminous coal, Ind. Eng. Chem. Res. 37(9) (1998) 3618-3624.[26] J.L. Figueiredo, N. Mahata, M.F.R. Pereira, M.J.S. Montero, J. Montero, F. Salvador, Adsorption of phenol on supercritically activated carbon fibres: Effect of texture and surface chemistry, J. Colloid Interface Sci. 357(1) (2011) 210-214.[27] I.I. Salame, T.J. Bandosz, Role of surface chemistry in adsorption of phenol on activated carbons, J. Colloid Interface Sci. 264(2) (2003) 307-312.[28] C.L. Mangun, K.R. Benak, M.A. Daley, J. Economy, Oxidation of activated carbon fibers: effect on pore size, surface chemistry, and adsorption properties, Chem. Mater. 11(12) (1999) 3476-3483.[29] H.P. Boehm, Surface oxides on carbon and their analysis: A critical assessment, Carbon 40(2) (2002) 145-149.[30] S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der Waals adsorption of gases, J. Am. Chem. Soc. 62(7) (1940) 1723-1732.[31] L.J. Li, G.K. Long, Effects of high temperature treatment on activated carbon pore structure, Chem. Ind. For. Prod. 19(3) (1999) 37-40.[32] M.W. Jung, K.H. Ahn, Y. Lee, K.P. Kim, J.S. Rhee, J. Tae Park, K.J. Paeng, Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC), Microchem. J. 70(2) (2001) 123-131.[33] N. Yoshizawa, Y. Yamada, M. Shiraishi, K. Kaneko, N. Setoyama, Evaluation of accessible and inaccessible microporosities of microporous carbons, J. Chem. Soc. Faraday Trans. 92(12) (1996) 2297-2302.[34] S. Biniak, G. Szymański, J. Siedlewski, A. ?wiatkowski, The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon 35(12) (1997) 1799-1810.[35] J.M.V.Nabais, P.J.M. Carrott, M.M.L.R. Carrott, J.A.Menéndez, Preparation andmodification of activated carbon fibres by microwave heating, Carbon 42(7) (2004) 1315-1320.[36] L.R. Radovic, I.F. Silva, J.I.Ume, J.A. Menendez, C. Leon, A.W. Scaroni, An experimental and theoretical study of the adsorption of aromatics possessing electronwithdrawing and electron-donating functional groups by chemically modified activated carbons, Carbon 35(9) (1997) 1339-1348.[37] C. Moreno-Castilla, Adsorption of organic molecules from aqueous solutions on carbon materials, Carbon 42(1) (2004) 83-94.[38] A. D?browski, P. Podko?cielny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon-A critical review, Chemosphere 58(8) (2005) 1049-1070.[39] A.P. Terzyk, Further insights into the role of carbon surface functionalities in the mechanism of phenol adsorption, J. Colloid Interface Sci. 268(2) (2003) 301-329.[40] G. Yang, H.L. Chen, H.D. Qin, Y.J. Feng, Amination of activated carbon for enhancing phenol adsorption: Effect of nitrogen-containing functional groups, Appl. Surf. Sci. 293(2014) 299-305.[41] R.W. Coughlin, F.S. Ezra, Role of surface acidity in the adsorption of organic pollutants on the surface of carbon, Environ. Sci. Technol. 2(4) (1968) 291-297.[42] H.Z. Fu,M.H.Wang, Y.S. Ho, The most frequently cited adsorption research articles in the Science Citation Index (expanded), J. Colloid Interface Sci. 379(1) (2012) 148-156.[43] S. Ho, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics 59(1) (2004) 171-177.[44] Y.S. Ho, Reviewof second-ordermodels for adsorption systems, J. Hazard.Mater. 136(3) (2006) 681-689.[45] S. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe, K. Sven. Vetenskapsakad. 24(2) (1898) 1-39.[46] Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J. 70(2) (1998) 115-124.[47] Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process Saf. Environ. 76(B4) (1998) 332-340.[48] R.S. Juang, F.C. Wu, R.L. Tseng, Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kernels, J. Colloid Interface Sci. 227(2) (2000) 437-444.[49] K. Mohanty, D. Das, M.N. Biswas, Adsorption of phenol fromaqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation, Chem. Eng. J. 115(1-2) (2005) 121-131.[50] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34(5) (1999) 451-465.[51] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40(9) (1918) 1361-1403.[52] H.M.F. Freundlich, Über die adsorption in lösungen, Z. Phys. Chem. 57A (1906) 385-470. |