[1] G. Dahlhoff, J.P.M. Niederer, W.F. Hoelderich, ∈-Caprolactam: new by-product free synthesis routes, Catal. Rev. 43 (4) (2001) 381–441. [2] Y. Wang, J. Yao, H.R. Li, D.S. Su, M. Antonietti, Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media, J. Am. Chem. Soc. 133 (8) (2011) 2362–2365. [3] H. Zhang, S.M. Mahajani, M.M. Sharma, T. Sridhar, Hydration of cyclohexene with solid acid catalysts, Chem. Eng. Sci. 57 (3) (2002) 315–322. [4] Y. Wang, J.S. Zhang, X.C. Wang, M. Antonietti, H.R. Li, Boron- and fluorine-containing mesoporous carbon nitride polymers: metal-free catalysts for cyclohexane oxidation, Angew. Chem. Int. Ed Engl. 49 (19) (2010) 3356–3359. [5] T.F.S. Silva, G.S. Mishra, M.F. Guedes da Silva, R. Wanke, L.M.D.R.S. Martins, A.J.L. Pombeiro, CuII complexes bearing the 2,2,2-tris(1-pyrazolyl)ethanol or 2,2,2-tris(1-pyrazolyl)ethyl methanesulfonate scorpionates. X-Ray structural characterization and application in the mild catalytic peroxidative oxidation of cyclohexane, Dalton Trans., (42) (2009) 9207-9215 [6] J. Zhong, J. Chen, L. Chen, Selective hydrogenation of phenol and related derivatives, Catal. Sci. Technol., 4(10) (2014) 3555-3569 [7] J.F. Zhu, G.H. Tao, H.Y. Liu, L. He, Q.H. Sun, H.C. Liu, Aqueous-phase selective hydrogenation of phenol to cyclohexanone over soluble Pd nanoparticles, Green Chem. 16 (5) (2014) 2664–2669. [8] M.S. Zhao, J.J. Shi, Z.Y. Hou, Selective hydrogenation of phenol to cyclohexanone in water over Pd catalysts supported on Amberlyst-45, Chin. J. Catal. 37 (2) (2016) 234–239. [9] H.F. Li, T.T. She, G.F. Chen, M.H. Sun, L.B. Niu, G.Y. Bai, Pd nanoparticles supported on amine-functionalized SBA-15 for the selective hydrogenation of phenol, Mol. Catal. 504 (2021) 111493. [10] S. Wang, L. Yang, T. Zhu, N. Jiang, F. Li, H. Wang, C. Zhang, H. Song, Highly efficient hydrogenation of phenol to cyclohexanol over Ni-based catalysts derived from Ni-MOF-74, React. Chem. Eng., (2022). [11] Y. Pérez, M. Fajardo, A. Corma, Highly selective palladium supported catalyst for hydrogenation of phenol in aqueous phase, Catal. Commun. 12 (12) (2011) 1071–1074. [12] Y.Z. Chen, X.Q. Kong, S.J. Mao, Z. Wang, Y.T. Gong, Y. Wang, Study of the role of alkaline sodium additive in selective hydrogenation of phenol, Chin. J. Catal. 40 (10) (2019) 1516–1524. [13] H. Zhou, B.B. Han, T.Z. Liu, X. Zhong, G.L. Zhuang, J.G. Wang, Selective phenol hydrogenation to cyclohexanone over alkali–metal-promoted Pd/TiO2 in aqueous media, Green Chem. 19 (15) (2017) 3585–3594. [14] H.Z. Liu, T. Jiang, B.X. Han, S.G. Liang, Y.X. Zhou, Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst, Science 326 (5957) (2009) 1250–1252. [15] Q. Wu, L. Wang, B.Z. Zhao, L. Huang, S.T. Yu, A.J. Ragauskas, Highly selective hydrogenation of phenol to cyclohexanone over a Pd-loaded N-doped carbon catalyst derived from chitosan, J. Colloid Interface Sci. 605 (2022) 82–90. [16] S.S. Ding, C.H. Zhang, Y.F. Liu, H. Jiang, R.Z. Chen, Selective hydrogenation of phenol to cyclohexanone in water over Pd@N-doped carbons derived from ZIF-67: role of dicyandiamide, Appl. Surf. Sci. 425 (2017) 484–491. [17] C.H. Zhang, Z.W. Pan, X.R. Zhu, H. Jiang, R.Z. Chen, W.H. Xing, Pd nanoparticles supported on hierarchically porous carbon nanofibers as efficient catalysts for phenol hydrogenation, Catal. Lett. 152 (2) (2022) 340–352. [18] C.H. Zhang, G.X. Yang, H. Jiang, Y.F. Liu, R.Z. Chen, W.H. Xing, Phenol hydrogenation to cyclohexanone over palladium nanoparticles loaded on charming activated carbon adjusted by facile heat treatment, Chin. J. Chem. Eng. 28 (10) (2020) 2600–2606. [19] J.X. Zhang, C.H. Zhang, H. Jiang, Y.F. Liu, R.Z. Chen, Highly efficient phenol hydrogenation to cyclohexanone over Pd@CN-rGO in aqueous phase, Ind. Eng. Chem. Res. 59 (23) (2020) 10768–10777. [20] X.T. Liu, F. Pang, J.P. Ge, Synthesis of N-doped mesoporous carbon nanorods through nano-confined reaction: high-performance catalyst support for hydrogenation of phenol derivatives, Chem. Asian J. 13 (7) (2018) 822–829. [21] K.A. Resende, C.E. Hori, F.B. Noronha, H. Shi, O.Y. Gutierrez, D.M. Camaioni, J.A. Lercher, Aqueous phase hydrogenation of phenol catalyzed by Pd and PdAg on ZrO2, Appl. Catal. A Gen. 548 (2017) 128–135. [22] P.M. de Souza, R.C. Rabelo-Neto, L.E.P. Borges, G. Jacobs, B.H. Davis, D.E. Resasco, F.B. Noronha, Hydrodeoxygenation of phenol over Pd catalysts. effect of support on reaction mechanism and catalyst deactivation, ACS Catal. 7 (3) (2017) 2058–2073. [23] Y.Z. Xiang, L.N. Kong, C.S. Lu, L. Ma, X.N. Li, Lanthanum-promoted Pd/Al2O3 catalysts for liquid phase insitu hydrogenation of phenol to cyclohexanone, React. Kinetics Mech. Catal. 100 (1) (2010) 227–235. [24] P. Makowski, R. Demir Cakan, M. Antonietti, F. Goettmann, M.M. Titirici, Selective partial hydrogenation of hydroxy aromatic derivatives with palladium nanoparticles supported on hydrophilic carbon, Chem. Commun. (8) (2008) 999. [25] S. Scirè, S. Minicò, C. Crisafulli, Selective hydrogenation of phenol to cyclohexanone over supported Pd and Pd-Ca catalysts: an investigation on the influence of different supports and Pd precursors, Appl. Catal. A Gen. 235 (1–2) (2002) 21–31. [26] C.H. Zhang, Z.Y. Qu, H. Jiang, R.Z. Chen, W.H. Xing, Nb2O5 promoted Pd/AC catalyst for selective phenol hydrogenation to cyclohexanone, Chin. J. Chem. Eng. 44 (2022) 87–93. [27] Z.Y. Zhang, Y.L. Li, J. Gu, L.P. Ding, N.H. Xue, L.M. Peng, X.F. Guo, Y. Zhu, J. Ma, W.P. Ding, The effect of electrostatic field on the catalytic properties of platinum clusters confined in zeolite for hydrogenation, Catal. Sci. Technol. 8 (24) (2018) 6384–6395. [28] Y.X. Qin, R.Y. Li, W. Mi, W. Shi, B.Y. Lu, X.L. Tong, Phenol hydrogenation to cyclohexanol on a novel Pd7P3/SiC catalyst with high activity and selectivity, Diam. Relat. Mater. 111 (2021) 108163. [29] S. Dzwigaj, J.P. Nogier, M. Che, M. Saito, T. Hosokawa, E. Thouverez, M. Matsuoka, M. Anpo, Influence of the Ti content on the photocatalytic oxidation of 2-propanol and CO on TiSiBEA zeolites, Catal. Commun. 19 (2012) 17–20. [30] A. Śrębowata, R. Baran, D. Łomot, D. Lisovytskiy, T. Onfroy, S. Dzwigaj, Remarkable effect of postsynthesis preparation procedures on catalytic properties of Ni-loaded BEA zeolites in hydrodechlorination of 1, 2-dichloroethane, Appl. Catal. B Environ. 147 (2014) 208–220. [31] B. Tang, W. Dai, X. Sun, G. Wu, N. Guan, M. Hunger, L. Li, Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides, Green Chem., 17(3) (2015) 1744-1755 [32] Y.H. Huang, S.Q. Xia, P.S. Ma, Effect of zeolite solid acids on the in situ hydrogenation of bio-derived phenol, Catal. Commun. 89 (2017) 111–116. [33] C.Y. Tu, J.W. Chen, W.L. Li, H.Y. Wang, K.X. Deng, V.A. Vinokurov, W. Huang, Hydrodeoxygenation of bio-derived anisole to cyclohexane over bi-functional IM-5 zeolite supported Ni catalysts, Sustain. Energy Fuels 3 (12) (2019) 3462–3472. [34] J. Wang, K. Okumura, S. Jaenicke, G.K. Chuah, Post-synthesized zirconium-containing beta zeolite in meerwein-ponndorf-verley reduction: pros and cons, Appl. Catal. A Gen. 493 (2015) 112–120. [35] G. Li, L. Gao, Z.Z. Sheng, Y.L. Zhan, C.Y. Zhang, J. Ju, Y.H. Zhang, Y. Tang, A Zr-Al-Beta zeolite with open Zr(iv) sites: an efficient bifunctional Lewis–Brønsted acid catalyst for a cascade reaction, Catal. Sci. Technol. 9 (15) (2019) 4055–4065. [36] S. Mahouche Chergui, A. Ledebt, F. Mammeri, F. Herbst, B. Carbonnier, H. Ben Romdhane, M. Delamar, M.M. Chehimi, Hairy carbon nanotube@nano-Pd heterostructures: design, characterization, and application in Suzuki C-C coupling reaction, Langmuir 26 (20) (2010) 16115–16121. [37] M.M. Li, Y. Li, L. Jia, Y. Wang, Tuning the selectivity of phenol hydrogenation on Pd/C with acid and basic media, Catal. Commun. 103 (2018) 88–91. |