[1] F.I. Khan, A. K. Ghoshal, Removal of volatile organic compounds from polluted air, J. Loss Prev. Process. Ind. 13 (6) (2000) 527–545. [2] Q. Hu, J.J. Li, Z.P. Hao, L.D. Li, S.Z. Qiao, Dynamic adsorption of volatile organic compounds on organofunctionalized SBA-15 materials, Chem. Eng. J. 149 (1–3) (2009) 281–288. [3] M.S. Li, S.C. Wu, Y.H. Shih, Characterization of volatile organic compound adsorption on multiwall carbon nanotubes under different levels of relative humidity using linear solvation energy relationship, J. Hazard. Mater. 315 (2016) 35–41. [4] B.E. Solsona, T. Garcia, C. Jones, S.H. Taylor, A.F. Carley, G.J. Hutchings, Supported gold catalysts for the total oxidation of alkanes and carbon monoxide, Appl. Catal. A: Gen. 312 (2006) 67–76. [5] D. Helmig, S. Rossabi, J. Hueber, P. Tans, S.A. Montzka, K. Masarie, K. Thoning, C. Plass-Duelmer, A. Claude, L.J. Carpenter, A.C. Lewis, S. Punjabi, S. Reimann, M.K. Vollmer, R. Steinbrecher, J.W. Hannigan, L.K. Emmons, E. Mahieu, B. Franco, D. Smale, A. Pozzer, Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production, Nat. Geosci. 9 (7) (2016) 490–495. [6] A.B. Hansen, F. Palmgren, VOC air pollutants in Copenhagen, Sci. Total Environ. 189-190 (1996) 451–457. [7] U. Bedi, S. Chauhan, Modeling the combustion of volatile organic compound (VOC) ethane in monolithic catalytic converter, Mater. Today: Proc. 28 (2020) 1727–1731. [8] S.F. Tahir, C.A. Koh, Catalytic oxidation of ethane over supported metal oxide catalysts, Chemosphere 34 (8) (1997) 1787–1793. [9] R.S. Pillai, I. Khan, E. Titus, C2-hydrocarbon adsorption in nano-porous faujasite: A DFT study, Mater. Today: Proc. 2 (1) (2015) 436–445. [10] M.C. Campo, A.M. Ribeiro, A.F.P. Ferreira, J.C. Santos, C. Lutz, J.M. Loureiro, A.E. Rodrigues, Carbon dioxide removal for methane upgrade by a VSA process using an improved 13X zeolite, Fuel Process. Technol. 143 (2016) 185–194. [11] B. Ozturk, D. Yilmaz, Absorptive removal of volatile organic compounds from flue gas streams, Process. Saf. Environ. Prot. 84 (5) (2006) 391–398. [12] S. Yun, H. Lee, W.E. Lee, H.S. Park, Multiscale textured, ultralight graphene monoliths for enhanced CO2 and SO2 adsorption capacity, Fuel 174 (2016) 36–42. [13] S.P. Deosarkar, V.G. Pangarkar, Adsorptive separation and recovery of organics from PHBA and SA plant effluents, Sep. Purif. Technol. 38 (3) (2004) 241–254. [14] R.T. Yang, Adsorbents: Fundamentals and Applications, John Wiley & Sons, New York, 2003. [15] M. Clausse, J. Bonjour, F. Meunier, Influence of the presence of CO2 in the feed of an indirect heating TSA process for VOC removal, Adsorption 9 (1) (2003) 77–85. [16] B. Puértolas, M.V. Navarro, J.M. Lopez, R. Murillo, A.M. Mastral, T. Garcia, Modelling the heat and mass transfers of propane onto a ZSM-5 zeolite, Sep. Purif. Technol. 86 (2012) 127–136. [17] D.K. Harris, D.R. Cahela, B.J. Tatarchuk, Wet layup and sintering of metal-containing microfibrous composites for chemical processing opportunities, Compos. Part A: Appl. Sci. Manuf. 32 (8) (2001) 1117–1126. [18] Y.J. Wang, Y. Tang, X.D. Wang, W. Shan, C. Ke, Z. Gao, J.H. Hu, W.L. Yang, Fabrication of zeolite coatings on stainless steel grids, J. Mater. Sci. Lett. 20 (23) (2001) 2091–2094. [19] E. Reichelt, M.P. Heddrich, M. Jahn, A. Michaelis, Fiber based structured materials for catalytic applications, Appl. Catal. A: Gen. 476 (2014) 78–90. [20] Y. Yang, H.P. Zhang, Y. Yan, Synthesis of CNTs on stainless steel microfibrous composite by CVD: Effect of synthesis condition on carbon nanotube growth and structure, Compos.B: Eng. 160 (2019) 369–383. [21] K. Nikolajsen, L. Kiwi-Minsker, A. Renken, Structured fixed-bed adsorber based on zeolite/sintered metal fibre for low concentration VOC removal, Chem. Eng. Res. Des. 84 (7) (2006) 562–568. [22] H.H. Chen, H.P. Zhang, Y. Yan, Preparation and characterization of a novel gradient porous ZSM-5 zeolite membrane/PSSF composite and its application for toluene adsorption, Chem. Eng. J. 209 (2012) 372–378. [23] H.H. Chen, H.P. Zhang, Y. Yan, Novel gradient porous ZSM-5 zeolite membrane/PSSF composite for enhancing mass transfer of isopropanol adsorption in a structured fixed bed, Ind. Eng. Chem. Res. 51(51) (2012) 16643–16650. [24] R.R. Kalluri, Microfibrous entrapped catalysts and sorbents: Microstructured heterogeneous contacting systems with enhanced efficiency, Ph.D.Thesis,Auburn University, USA, 2008. [25] A.S. Huang, F.Y. Liang, F. Steinbach, J. Caro, Preparation and separation properties of LTA membranes by using 3-aminopropyltriethoxysilane as covalent linker, J. Membr. Sci. 350 (1–2) (2010) 5–9. [26] A.S. Huang, Q. Liu, N.Y. Wang, X. Tong, B.X. Huang, M. Wang, J. Caro, Covalent synthesis of dense zeolite LTA membranes on various 3-chloropropyltrimethoxysilane functionalized supports, J. Membr. Sci. 437 (2013) 57–64. [27] Y. Yang, K. Yuen Koh, R.Y. Li, H.P. Zhang, Y. Yan, J.P. Chen, An innovative lanthanum carbonate grafted microfibrous composite for phosphate adsorption in wastewater, J. Hazard. Mater. 392 (2020) 121952. [28] D. Zhang, H.P. Zhang, Y. Yan, Synthesis of 5A zeolite coating/PSSF composites and the application for adsorption of methane from air, RSC Adv. 5 (68) (2015) 54913–54919. [29] J. Liu, Y. Yan, H.P. Zhang, Adsorption dynamics of toluene in composite bed with microfibrous entrapped activated carbon, Chem. Eng. J. 173 (2) (2011) 456–462. [30] J. Liu, Y. Yan, H.P. Zhang, Preparation of microfibrous entrapped activated carbon composites and its application for benzene adsorption, Sep. Sci. Technol. 49 (13) (2014) 2016–2024. [31] J. Collins, The LUB/equilibrium section concept for fixed-bed adsorption, Chem. Eng. Prog. Symp. Ser. 63 (1967) 31-35. [32] B. Salamatinia, A.H. Kamaruddin, A.Z. Abdullah, Modeling of the continuous copper and zinc removal by sorption onto sodium hydroxide-modified oil palm frond in a fixed-bed column, Chem. Eng. J. 145 (2) (2008) 259–266. [33] W. Tsai, C. Chang, C. Ho, L. Chen, Adsorption properties and breakthrough model of 1, 1-dichloro-1-fluoroethane on activated carbons, J. Hazard. Mater. 69 (1) (1999) 53–66. [34] Z. Aksu, F. Gönen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process. Biochem. 39 (5) (2004) 599–613. [35] B. Cheknane, M. Baudu, J.P. Basly, O. Bouras, F. Zermane, Modeling of basic green 4 dynamic sorption onto granular organo–inorgano pillared clays (GOICs) in column reactor, Chem. Eng. J. 209 (2012) 7–12. [36] L. Chen, Y.W. Wang, M.Y. He, Q. Chen, Z.H. Zhang, Facile synthesis of 5A zeolite from attapulgite clay for adsorption of n-paraffins, Adsorption 22 (3) (2016) 309–314. [37] Y. Yan, S.S. Jiang, H.P. Zhang, X.Y. Zhang, Preparation of novel Fe-ZSM-5 zeolite membrane catalysts for catalytic wet peroxide oxidation of phenol in a membrane reactor, Chem. Eng. J. 259 (2015) 243–251. |