[1] A. Farooq, H. Song, Y.K. Park, G.H. Rhee, Effects of different Al2O3 support on HDPE gasification for enhanced hydrogen generation using Ni-based catalysts, Int. J. Hydrogen Energy, 46 (34) (2001) 18085-18092. [2] H. Kazemi, S. Shahhosseini, A. Bazyari, M. Amiri, A study on the effects of textural properties of γ-Al2O3 support on CO2 capture capacity of Na2CO3, Process Saf. Environ. Prot, 138 (34) (2020)176-185. [3] P. Hao, D.K. Schwartz, J.W. Medlin, Effect of surface hydrophobicity of Pd/Al2O3 on vanillin hydrodeoxygenation in a Water/Oil system, ACS Catal, 8 (12) (2020)11165-11173. [4] R.M. Ravenelle, J.R. Copeland, W.G. Kim, J.C. Crittenden, C. Sievers, Structural changes of γ-Al2O3-supported catalysts in hot liquid water, ACS Catal, 1 (5) (2011)552-561. [5] L.M. Fu, S.R. Li, Z.Y. Han, H.F. Liu, H.Q. Yang, Tuning the wettability of mesoporous silica for enhancing the catalysis efficiency of aqueous reactions, Chem Commun, 50 (70) (2014)10045-10048. [6] W. Liang, F.S. Xiao, The importance of catalyst wettability, Chem. Cat. Chem, 6 (2014)3048-3052. [7] L.S. Ye, D.L. Luo, Y. Wan, W.S. Guo, Q.Y. Xu, C.L. Jiang, Improved catalysts for hydrogen/deuterium exchange reactions, Int. J. Hydrogen Energy, 38 (31) (2013)13596-13603. [8] N. Pino, T. Bui, G. Hincapié, D. López, D.E. Resasco, Hydrophobic zeolites for the upgrading of biomass-derived short oxygenated compounds in water/oil emulsions, Appl. Catal. A, 559 (2018)94-101. [9] Y.M. Hu, Y. Zhu, W.J. Yi, H. Zhou, S.S. Xin, W.J. He, T. Shen, Dip-coating for dodecylphosphonic acid derivatization on aluminum surfaces: an easy approach to superhydrophobicity, J. Coat. Tech. Res, 13 (1) (2016)115–121. [10] D.Q. Liu, A.J. Zhang, J.A. Jia, J.S. Han, J.Y. Zhang, J.H. Meng, Novel in-situ exothermic assisted sintering high Entropy Al2O3/(NbTaMoW)C composites: microstructure and mechanical properties, Composites Part B, 212 (2021)108681. [11] B. Nabgan, T.A.T. Abdullah, M. Tahir, W. Nabgan, S. Triwahyono, A.A. Jalil, Y. Gambo, M. Ibrahim, K. Moghadamian, Pellet size dependent steam reforming of polyethylene terephthalate waste for hydrogen production over Ni/La promoted Al2O3 catalyst, Int. J. Hydrogen Energy, 42 (34) (2017) 21571-21585. [12] D. Schuldis, A. Richter, J. Benick, P. Saint-Cast, M. Hermle, S.W. Glunz, Properties of the c-Si/Al2O3 interface of ultrathin atomic layer deposited Al2O3 layers capped by SiNx for c-Si curface passivation, Appl. Phys. Lett, 105 (23) (2014)231601. [13] H.K. Kang, Y.S. Kang, D.K. Kim, B. Min, M.H. Cho, Al2O3 passivation effect in HfO2·Al2O3 laminate structures grown on InP substrates, ACS Appl. Mater. Interfaces, 9 (20) (2017)17526–17535. [14] L.D. Ellis, R.M. Trottier, C.B. Musgrave, D.K. Schwartz, J.W. Medlin, Controlling the surface reactivity of titania via electronic tuning of self-assembled monolayers, ACS Catal, 7 (12) (2017)8351-8357. [15] D. Heiman-Burstein, A. Dota, H. Dodiuk, S. Kenig, Hybrid sol–gel superhydrophobic coatings based on alkyl silane-modified nanosilica, Polymers, 13 (4) (2021)539. [16] M.X. Bai, C.L.M. Bai, D. Asai, H. Takemura, T. Yoshida, Role of a long-chain alkyl group in sulfated alkyl oligosaccharides with high anti-HIV activity revealed by SPR and DLS, Carbohydr. Polym, 245 (2020)116518. [17] K.Y. Fu, M.Y. Xu, R. Zhong, Z.L. Yang, A.A. Zhou, Preparation characterization and application of polyether and long-chain alkyl co-modified polydimethylsiloxane, J. Polym. Res, 26 (2019)261. [18] T.V. Cleve, D. Underhill, M.V. Rodrigues, C. Sievers, J.W. Medlin, Enhanced hydrothermal stability of gamma-Al2O3 catalyst supports with alkyl phosphonate coatings, Langmuir, 34 (12) (2018) 3619-3625. [19] X.L. Yan, Y.F. Li, X.Y. Hu, R. Feng, M. Zhou, D.Z. Han, Enhanced adsorption of phenol from aqueous solution by carbonized trace zif-8-decorated activated carbon pellets-sciencedirect, Chin. J. Chem. Eng, 33 (5) (2021)279-285. [20] P.J. Yan, P.F. Tian, K.J. Li, M.A.C. Stuart, J.Y. Wang, X.H. Yu, S.H. Zhou, Rh nanoclusters encaged in hollow mesoporous silica nanoreactors with enhanced catalytic performance for phenol selective hydrogenation, Chem. Eng. J, 397 (2020)125484. [21] C.C. Templis, C.J. Revelas, A.A. Papastylianou, N.G. Papayannakos, Phenol hydrodeoxygenation over a reduced and sulfided NiMo/γ-Al2O3 catalyst, Ind. Eng. Chem. Res, 58 (16) (2019)6278-6287. [22] H. Cheng, R. Liu, Q. Wang, C. Wu, Y. Yu, F. Zhao, Selective reduction of phenol derivatives to cyclohexanones in water under microwave irradiation, New J. Chem, 36 (2012)1085-1090. [23] Z.Y. Qu, S. Hu, H. Jiang, Y.F. Liu, J. Huang, W.H. Xing, R.Z. Chen, A side-stream catalysis/membrane filtration system for continuous liquid-phase hydrogenation of phenol over Pd@CN to produce cyclohexanone, Ind. Eng. Chem, Res 56 (41) (2017)11755-11762. [24] T.L. Zhu, J. Dong, L.B. Niu, G.F. Chen, L. Ricardez-Sandoval, X. Wen, G.Y. Bai, Highly dispersed Ni/NiCaAlOx nanocatalyst derived from ternary layered double hydroxides for phenol hydrogenation: Spatial confinement effects and basicity of the support, Appl. Clay Sci, 203 (2021)106003. [25] W.Q. Cai, J.L. Zhuo, J.M. Fang, Z.C. Yang, 2-ethyl-9,10-anthraquinone assisted sol-gel synthesis of Pd/γ-Al2O3 nanorods with enhanced catalytic performance in 2-ethyl-9,10-anthraquinone hydrogenation, Chem. Eng. J, 27 (8) (2019)1863-1869. [26] Y. Zhang, Z.Y. Pan, N. Wang, L. Wang, Performance of carbon-modified Pd/SBA-15 catalyst for 2-ethylanthraquinone hydrogenation, Mol. Catal, 504 (2021)111424. [27] E. Antoshkina, O. Rakova, A. Efremov, Investigation of NiO-Al2O3-SiO2 properties via XRD, FTIR techniques and thermal analysis, Mater. Sci. Forum, 946 (2019)134-138. [28] K. Djebaili, Z. Mekhalif, A. Boumaza, A. Djelloul, XPS, FTIR, EDX, and XRD analysis of Al2O3 scales grown on PM2000 alloy, J. Spectrosc, 2015 (2015)868109. [29] A.K. Chandiran, S.M. Zakeeruddin, R. Humphry-Baker, M.K. Nazeeruddin, M. Grätzel, F. Sauvage, Investigation on the interface modification of TiO2 surfaces by functional Co-adsorbents for high-efficiency dye-sensitized solar cells, Chem. Phys. Chem, 18 (19) (2017)2724-2731. [30] C. Viornery, Y. Chevolot, D. Léonard, B.O. Aronsson, P. Péchy, H.J. Mathieu, P. Descouts, G. Michael, Surface modification of titanium with phosphonic acid to improve bone bonding: characterization by XPS and ToF-SIMS, Langmuir, 18 (7) (2002)2582-2589. [31] D. Müller, E. Jahn, B. Fahlke, G. Ladwig, U. Haubenreisser, High resolution 27Al and 31P n.m.r. studies of the aluminium phosphate molecular sieve AlPO4-5, Zeolites, 5 (1) (1985)53-56. [32] G.W. Wanger, R.A. Fry, Observation of distinct surface AlIV sites and phosphonate binding modes in γ-alumina and concrete by high-field 27Al and 31P MAS NMR, J. Phys. Chem. C, 113 (30) (2009) 13352-13357. [33] Y.X. Lu, C.X. Li, D.G. Deng, B. Dai, L. Wang, S.Q. Xu, Properties of boehmite (γ-AlOOH) and Eu3+-doped boehmite synthesized by hydrothermal method, J. Light. Electron, 154 (2018)171-176. [34] M.K. Mardkhe, K. Keyvanloo, C.H. Bartholomew, W.C. Hecker, T.M. Alam, B.F. Woodfield, Acid site properties of thermally stable, silica-doped alumina as a function of silica/alumina ratio and calcination temperature, Appl. Catal. A, 482 (2014)16-23. [35] H. Zhou, B. Han, T. Liu, X. Zhong, G. Zhuang, J. Wang, Selective phenol hydrogenation to cyclohexanone over alkali–metal-promoted Pd/TiO2 in aqueous media, Green Chem, 15 (19) (2017)3585-3594. [36] S. Xu, J. Du, Q. Zhou, H. Li, C. Wang, J. Tang, Selective and leaching-resistant palladium catalyst on a porous polymer support for phenol hydrogenation, J. Colloid Interface Sci, 604 (2021)876-884. [37] P.M. Souza, R.C. Rabelo-Neto, L.E.P. Borges, G. Jacobs, B.H. Davis, T. Sooknoi, D.E. Resasco, F.B. Noronha, Role of keto intermediates in the hydrodeoxygenation of phenol over Pd on oxophilic supports, ACS Catal, 5 (2015)1318-1329. [38] F. Zhang, S. Chen, H. Li, X.M. Zhang, H. Yang, Pd nanoparticles embedded in the outershell of a mesoporous core–shell catalyst for phenol hydrogenation in pure water, RSC Adv, 5 (2015)102811-102817. [39] J. Lu, Z. Ma, X. Wei, Q. Zhang, B. Hu, Support morphology-dependent catalytic activity of the Co/CeO2 catalyst for the aqueous-phase hydrogenation of phenol, New J. Chem, 44 (2020)9298–9313. [40] V. Vinokurov, A. Glotov, Y. Chudakov, A. Stavitskaya, E. Ivanov, P. Gushchin, A. Zolotukhina, A. Maximov, E. Karakhanov, Y. Lvov, Core/shell ruthenium-halloysite nanocatalysts for hydrogenation of phenol, Ind. Eng. Chem. Res, 56 (47) (2017)14043–14052. [41] A. Li, K. Shen, J. Chen, Z. Li, Y. Li, Highly selective hydrogenation of phenol to cyclohexanol over MOF-derived non-noble Co-Ni@NC catalysts, Chem. Engineer. Sci, 166 (2017)66-76. |