[1] Y.J. Zhang, J.C. Zhou, J.Q. Si, Synergistic catalysis of nano-Pd and nano rare-earth oxide/AC:Complex nanostructured catalysts fabricated by a photochemical route for selective hydrogenation of phenol, RSC Adv. 7 (86) (2017) 54779-54788.https://doi.org/10.1039/c7ra09917g [2] R.D. Patil, Y. Sasson, Selective transfer hydrogenation of phenol to cyclohexanone on supported palladium catalyst using potassium formate as hydrogen source under open atmosphere, Appl. Catal. A:Gen. 499 (2015) 227-231.http://dx.doi.org/10.1016/j.apcata.2015.04.009 [3] X.F. Huang, G.P. Yuan, G. Huang, S.J. Wei, Study on maximizing catalytic performance of cobalt(II) 5, 10, 15, 20-tetrakis(4-pyridyl)porphyrin for cyclohexane oxidation, J. Ind. Eng. Chem. 77 (2019) 135-145.http://dx.doi.org/10.1016/j.jiec.2019.04.028 [4] G. Bellussi, C. Perego, Industrial catalytic aspects of the synthesis of monomers for nylon production, CATTECH 4 (1) (1999) 4-16.http://dx.doi.org/10.1023/A:1011905009608 [5] X. Xu, H.R. Li, Y. Wang, Selective hydrogenation of phenol to cyclohexanone in water over Pd@N-doped carbon derived from ionic-liquid precursors, ChemCatChem 6 (12) (2014) 3328-3332.https://doi.org/10.1002/cctc.201402561 [6] Y.Y. Zhu, G.Q. Yu, J. Yang, M. Yuan, D. Xu, Z.P. Dong, Biowaste soybean curd residue-derived Pd/nitrogen-doped porous carbon with excellent catalytic performance for phenol hydrogenation, J Colloid Interface Sci 533 (2019) 259-267.https://www.ncbi.nlm.nih.gov/pubmed/30170277/ [7] Y. Wang, J. Yao, H.R. Li, D.S. Su, M. Antonietti, Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media, J Am Chem Soc 133 (8) (2011) 2362-2365.https://www.ncbi.nlm.nih.gov/pubmed/21294506/ [8] T.Z. Liu, H. Zhou, B.B. Han, Y.B. Gu, S.Q. Li, J. Zheng, X. Zhong, G.L. Zhuang, J.G. Wang, Enhanced selectivity of phenol hydrogenation in low-pressure CO2 over supported Pd catalysts, ACS Sustain Chem. Eng. 5 (12) (2017) 11628-11636 [9] S.W. Liu, J. Han, Q. Wu, B. Bian, L. Li, S.T. Yu, J. Song, C. Zhang, A.J. Ragauskas, Hydrogenation of phenol to cyclohexanone over bifunctional Pd/C-heteropoly acid catalyst in the liquid phase, Catal. Lett. 149 (9) (2019) 2383-2389.http://dx.doi.org/10.1007/s10562-019-02852-1 [10] H. Zhou, B.B. Han, T.Z. Liu, X. Zhong, G.L. Zhuang, J.G. Wang, Selective phenol hydrogenation to cyclohexanone over alkali-metal-promoted Pd/TiO2 in aqueous media, Green Chem. 19 (15) (2017) 3585-3594 [11] U.R. Pillai, E. Sahle-Demessie, Strontium as an efficient promoter for supported palladium hydrogenation catalysts, Appl. Catal. A:Gen. 281 (1-2) (2005) 31-38.http://dx.doi.org/10.1016/j.apcata.2004.11.009 [12] H. Li, J. Liu, S.H. Xie, M.H. Qiao, W.L. Dai, Y.F. Lu, H.X. Li, Vesicle-assisted assembly of mesoporous Ce-doped Pd nanospheres with a hollow chamber and enhanced catalytic efficiency, Adv. Funct. Mater. 18 (20) (2008) 3235-3241.https://doi.org/10.1002/adfm.200800667 [13] Z.L. Li, J.H. Liu, C.G. Xia, F.W. Li, Nitrogen-functionalized ordered mesoporous carbons as multifunctional supports of ultrasmall Pd nanoparticles for hydrogenation of phenol, ACS Catal. 3 (11) (2013) 2440-2448.http://dx.doi.org/10.1021/cs400506q [14] M. Crespo-Quesada, A. Yarulin, M.S. Jin, Y.N. Xia, L. Kiwi-Minsker, Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals:Which sites are most active and selective?J Am Chem Soc 133 (32) (2011) 12787-12794.https://www.ncbi.nlm.nih.gov/pubmed/21749155/ [15] W.Y. Chen, J. Ji, X. Feng, X.Z. Duan, G. Qian, P. Li, X.G. Zhou, D. Chen, W.K. Yuan, Mechanistic insight into size-dependent activity and durability in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane, J Am Chem Soc 136 (48) (2014) 16736-16739.https://www.ncbi.nlm.nih.gov/pubmed/25405630/ [16] X.Q. Kong, Y.T. Gong, S.J. Mao, Y. Wang, Selective hydrogenation of phenol, ChemNanoMat 4 (5) (2018) 432-450 [17] D.Y. Li, C. Gu, F. Han, Z.X. Zhong, W.H. Xing, Catalytic performance of hybrid Pt@ZnO NRs on carbon fibers for methanol electro-oxidation, Chin. J. Chem. Eng. 25 (12) (2017) 1871-1876.http://dx.doi.org/10.1016/j.cjche.2017.08.013 [18] Y. Shu, H.Y. Long, F. Zhang, H.C. Wang, C. Xu, Catalytic reduction of NOx by biomass-derived activated carbon supported metals, Res. Environ. Sci. (2018) 31(9)1588-1596 [19] C. Shen, W.Q. Zhou, H. Yu, L. Du, Ni nanoparticles supported on carbon as efficient catalysts for steam reforming of toluene (model tar), Chin. J. Chem. Eng. 26 (2) (2018) 322-329.http://dx.doi.org/10.1016/j.cjche.2017.03.028 [20] J. Wang, Z.Z. Wei, S.J. Mao, H.R. Li, Y. Wang, Highly uniform Ru nanoparticles over N-doped carbon:pH and temperature-universal hydrogen release from water reduction, Energy Environ. Sci. 11 (4) (2018) 800-806.https://doi.org/10.1039/c7ee03345a [21] J. Deng, T.Y. Xiong, F. Xu, M.M. Li, C.L. Han, Y.T. Gong, H.Y. Wang, Y. Wang, Inspired by bread leavening:One-pot synthesis of hierarchically porous carbon for supercapacitors, Green Chem. 17 (7) (2015) 4053-4060.https://doi.org/10.1039/c5gc00523j [22] X.B. Bao, Y.T. Gong, Y.Z. Chen, H. Zhang, Z. Wang, S.J. Mao, L. Xie, Z. Jiang, Y. Wang, Carbon vacancy defect-activated Pt cluster for hydrogen generation, J. Mater. Chem. A 7 (25) (2019) 15364-15370.https://doi.org/10.1039/c9ta04010b [23] K.A. Resende, F.B. Noronha, C.E. Hori, Hydrodeoxygenation of phenol over metal supported niobia catalysts, Renew. Energy 149 (2020) 198-207.http://dx.doi.org/10.1016/j.renene.2019.12.061 [24] L.P. Kong, L.L. Zhang, J.L. Gu, L. Gou, L.F. Xie, Y.Y. Wang, L.Y. Dai, Catalytic hydrotreatment of kraft lignin into aromatic alcohols over nickel-rhenium supported on niobium oxide catalyst, Bioresour Technol 299 (2020) 122582.https://www.ncbi.nlm.nih.gov/pubmed/31877480/ [25] C. Hernández Mejía, T.W. van Deelen, K.P. de Jong, Activity enhancement of cobalt catalysts by tuning metal-support interactions, Nat Commun 9 (1) (2018) 4459.https://www.ncbi.nlm.nih.gov/pubmed/30367060/ [26] J.W. Jun, Y.W. Suh, D.J. Suh, Y.K. Lee, Strong metal-support interaction effect of Pt/Nb2O5 catalysts on aqueous phase hydrodeoxygenation of 1, 6-hexanediol, Catal. Today 302 (2018) 108-114.http://dx.doi.org/10.1016/j.cattod.2017.03.026 [27] S.B.T. Tran, H. Choi, S. Oh, J.Y. Park, Influence of support acidity of Pt/Nb2O5 catalysts on selectivity of CO2 hydrogenation, Catal. Lett. 149 (10) (2019) 2823-2835.http://dx.doi.org/10.1007/s10562-019-02822-7 [28] R. Buitrago-Sierra, J.C. Serrano-Ruiz, F. Rodríguez-Reinoso, A. Sepúlveda-Escribano, J.A. Dumesic, Ce promoted Pd-Nb catalysts for γ-valerolactone ring-opening and hydrogenation, Green Chem. 14 (12) (2012) 3318.https://doi.org/10.1039/c2gc36161b [29] F.Y. Ye, D.M. Zhang, T. Xue, Y.M. Wang, Y.J. Guan, Enhanced hydrogenation of ethyl levulinate by Pd-AC doped with Nb2O5, Green Chem. 16 (8) (2014) 3951.https://doi.org/10.1039/c4gc00972j [30] B.T. Liu, H.Q. Wang, Y. Chen, J. Wang, L.L. Peng, L. Li, Pt nanoparticles anchored on Nb2O5 and carbon fibers as an enhanced performance catalyst for methanol oxidation, J. Alloy. Compd. 682 (2016) 584-589.http://dx.doi.org/10.1016/j.jallcom.2016.04.291 [31] Y. Liu, M. Tursun, H.B. Yu, X.P. Wang, Surface property and activity of Pt/Nb2O5-ZrO2 for selective catalytic reduction of NO by H2, Mol. Catal. 464 (2019) 22-28.http://dx.doi.org/10.1016/j.mcat.2018.12.015 [32] H.Z. Liu, T. Jiang, B.X. Han, S.G. Liang, Y.X. Zhou, Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst, Science 326 (5957) (2009) 1250-1252.https://www.ncbi.nlm.nih.gov/pubmed/19965472/ [33] M.M. Li, Y. Li, L. Jia, Y. Wang, Tuning the selectivity of phenol hydrogenation on Pd/C with acid and basic media, Catal. Commun. 103 (2018) 88-91.http://dx.doi.org/10.1016/j.catcom.2017.09.028 [34] J.X. Zhang, C.H. Zhang, H. Jiang, Y.F. Liu, R.Z. Chen, Highly efficient phenol hydrogenation to cyclohexanone over Pd@CN-rGO in aqueous phase, Ind. Eng. Chem. Res. 59 (23) (2020) 10768-10777 [35] Y.J. Zhang, J.C. Zhou, K. Li, M. Lv, Synergistic catalytic hydrogenation of phenol over hybrid nano-structure Pd catalyst, Mol. Catal. 478 (2019) 110567.http://dx.doi.org/10.1016/j.mcat.2019.110567 [36] K.J. Griffith, A.C. Forse, J.M. Griffin, C.P. Grey, High-rate intercalation without nanostructuring in metastable Nb2O5 bronze phases, J Am Chem Soc 138 (28) (2016) 8888-8899.https://www.ncbi.nlm.nih.gov/pubmed/27264849/ [37] M.P.F. Graça, A. Meireles, C. Nico, M.A. Valente, Nb2O5 nanosize powders prepared by Sol-gel-Structure, morphology and dielectric properties, J. Alloy. Compd. 553 (2013) 177-182.http://dx.doi.org/10.1016/j.jallcom.2012.11.128 [38] N. Kumari, K. Gaurav, S.K. Samdarshi, A.S. Bhattacharyya, S. Paul, B. Rajbongshi, K. Mohanty, Dependence of photoactivity of niobium pentoxide (Nb2O5) on crystalline phase and electrokinetic potential of the hydrocolloid, Sol. Energy Mater. Sol. Cells 208 (2020) 110408.http://dx.doi.org/10.1016/j.solmat.2020.110408 [39] A.M. Raba, J. Bautista-Ruíz, M.R. Joya, Synthesis and structural properties of niobium pentoxide powders:A comparative study of the growth process, Mat. Res. 19 (6) (2016) 1381-1387.https://doi.org/10.1590/1980-5373-mr-2015-0733 [40] Z.Y. Li, M.S. Akhtar, D.H. Kwak, O.B. Yang, Improvement in the surface properties of activated carbon via steam pretreatment for high performance supercapacitors, Appl. Surf. Sci. 404 (2017) 88-93.http://dx.doi.org/10.1016/j.apsusc.2017.01.238 [41] J.B. Guan, Y.N. Fang, T. Zhang, L.N. Wang, H. Zhu, M.L. Du, M. Zhang, Kelp-derived activated porous carbon for the detection of heavy metal ions via square wave anodic stripping voltammetry, Electrocatalysis 11 (1) (2020) 59-67.http://dx.doi.org/10.1007/s12678-019-00568-9 [42] H.F. Xiong, M. Nolan, B.H. Shanks, A.K. Datye, Comparison of impregnation and deposition precipitation for the synthesis of hydrothermally stable niobia/carbon, Appl. Catal. A:Gen. 471 (2014) 165-174.http://dx.doi.org/10.1016/j.apcata.2013.11.018 [43] I. Nowak, M. Ziolek, Niobium compounds:Preparation, characterization, and application in heterogeneous catalysis, Chem Rev 99 (12) (1999) 3603-3624.https://www.ncbi.nlm.nih.gov/pubmed/11849031/ [44] Y. Tong, X.F. Lu, W.N. Sun, G.D. Nie, L. Yang, C. Wang, Electrospun polyacrylonitrile nanofibers supported Ag/Pd nanoparticles for hydrogen generation from the hydrolysis of ammonia borane, J. Power Sources 261 (2014) 221-226.http://dx.doi.org/10.1016/j.jpowsour.2014.03.051 [45] J.J. Zhang, T.T. Jiang, Y.L. Mai, X. Wang, J.Z. Chen, B. Liao, Selective catalytic oxidation of sulfides to sulfoxides or sulfones over amorphous Nb2O5/AC catalysts in aqueous phase at room temperature, Catal. Commun. 127 (2019) 10-14.http://dx.doi.org/10.1016/j.catcom.2019.04.013 [46] S. Damyanova, L. Dimitrov, L. Petrov, P. Grange, Effect of niobium on the surface properties of Nb2O5-SiO2-supported Mo catalysts, Appl. Surf. Sci. 214 (1-4) (2003) 68-74 [47] G.X. Yang, J.X. Zhang, H. Jiang, Y.F. Liu, R.Z. Chen, Turning surface properties of Pd/N-doped porous carbon by trace oxygen with enhanced catalytic performance for selective phenol hydrogenation to cyclohexanone, Appl. Catal. A:Gen. 588 (2019) 117306.http://dx.doi.org/10.1016/j.apcata.2019.117306 [48] P. Arunkumar, A.G. Ashish, B. Babu, S. Sarang, A. Suresh, C.H. Sharma, M. Thalakulam, M.M. Shaijumon, Nb2O5/graphene nanocomposites for electrochemical energy storage, RSC Adv. 5 (74) (2015) 59997-60004.https://doi.org/10.1039/c5ra07895d [49] S. Hu, G.X. Yang, H. Jiang, Y.F. Liu, R.Z. Chen, Selective hydrogenation of phenol to cyclohexanone over Pd@CN (N-doped porous carbon):Role of catalyst reduction method, Appl. Surf. Sci. 435 (2018) 649-655.http://dx.doi.org/10.1016/j.apsusc.2017.11.181 [50] S.S. Ding, C.H. Zhang, Y.F. Liu, H. Jiang, W.H. Xing, R.Z. Chen, Pd nanoparticles supported on N-doped porous carbons derived from ZIF-67:Enhanced catalytic performance in phenol hydrogenation, J. Ind. Eng. Chem. 46 (2017) 258-265. |