[1] M. Kampa, E. Castanas, Human health effects of air pollution, Environ. Pollut. 151 (2008) 362-367. [2] T. Ohara, H. Akimoto, J. Kurokawa, N. Horii, K. Yamaji, X. Yan, T. Hayasaka, An Asian emission inventory of anthropogenic emission sources for the period 1980-2020, Atmos. Chem. Phys 7 (2007) 4419-4444. [3] D.G. Streets, S.T. Waldhoff, Present and future emissions of air polluants in China SO2, NOx and CO, Atmos. Environ. 34 (2000) 363-374. [4] K. Skalska, J. S. Miller, S. Ledakowicz, Trends in NOx abatement: A review, Sci. Total Environ. 408 (2010) 3976-3989. [5] S. Roy, M.S. Hegde, G. Madras, Catalysis for NOx abatement, Appl. Energy 86 (2009) 2283-2297. [6] Y. Peng, J. Li, W. Shi, J. Xu, J. Hao, Design strategies for development of SCR catalyst improvement of alkali poisoning resistance and novel regeneration method, Environ. Sci. Technol. 46 (2012) 12623-12629. [7] L. Lisi, S. Cimino, Poisoning of SCR catalysts by alkali and alkaline earth metals, Catalysts. 10 (2020) 1475. [8] B.K. Olsen, F. Kügler, F. Castellino, A.D. Jensen, Poisoning of vanadia based SCR catalysts by potassium: influence of catalyst composition and potassium mobility, Catal. Sci. Technol. 6 (7) (2016) 2249-2260. [9] D. Nicosia, M. Elsener, O. Kröcher, P. Jansohn, Basic investigation of the chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by potassium, calcium, and phosphate, Top. Catal. 42-43 (1-4) (2007) 333-336. [10] X. Li, X. Li, R.T. Yang, J. Mo, J. Li, J. Hao, The poisoning effects of calcium on V2O5-WO3/TiO2 catalyst for the SCR reaction: Comparison of different forms of calcium, Mol. Catal. 434 (2017) 16-24. [11] S.M. Jung, P. Grange, Characterization and reactivity of V2O5-WO3 supported on TiO2-SO42- catalyst for the SCR reaction, Appl. Catal., B. 32 (1) (2001) 123-131. [12] P. Hu, Z. Huang, X. Gu, F. Xu, J. Gao, Y. Wang, Y. Chen, X. Tang, Alkali-resistant mechanism of a hollandite DeNOx catalyst, Environ. Sci. Technol. 49 (11) (2015) 7042-7047. [13] J. Zhang, Z. Huang, Y. Du, X. Wu, H. Shen, G. Jing, Alkali-poisoning-resistant Fe2O3/MoO3/TiO2 catalyst for the selective reduction of NO by NH3: The role of the MoO3 safety buffer in protecting surface active sites, Environ. Sci. Technol. 54 (1) (2020) 595-603. [14] X. Wang, Q. Cong, L. Chen, Y. Shi, Y. Shi, S. Li, W. Li, The alkali resistance of CuNbTi catalyst for selective reduction of NO by NH3: A comparative investigation with VWTi catalyst, Appl. Catal., B 246 (2019) 166-179. [15] S.M. Jung, P. Grange, Characterization and reactivity of pure TiO2-SO42- SCR catalyst: influence of SO42- content, Catal. Today 59 (3) (2000) 305-312. [16] X. Guo, C. Bartholomew, W. Hecker, L.L. Baxter, Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems, Appl. Catal., B 92 (1) (2009) 30-40. [17] R.Q. Long, M.T. Chang, R.T. Yang, Enhancement of activities by sulfation on Fe-exchanged TiO2-pillared clay for selective catalytic reduction of NO by ammonia, Appl. Catal., B 33 (2) (2001) 97-107. [18] T. Gu, Y. Liu, X. Weng, H. Wang, Z. Wu, The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH3, Catal. Commun. 12 (2020) 310-313. [19] S.M. Jung, P. Grange, Investigation of the promotional effect of V2O5 on the SCR reaction and its mechanism on hybrid catalyst with V2O5 and TiO2-SO42- catalysts, Appl. Catal., B 36 (2002) 207-215. [20] S. Yang, Y. Guo, H. Chang, L. Ma, Y. Peng, Z. Qu, N. Yan, C. Wang, J. Li, Novel effect of SO2 on the SCR reaction over CeO2: Mechanism and significance, Appl. Catal., B 136-137 (2013) 19-28. [21] F. Zeng, D. Luo, Z. Zhang, B. Liang, X. Yuan, L. Fu, Study on the behavior of sulfur in hydrolysis process of titanyl sulfate solution, J. Alloys Compd. 670 (2016) 249-257. [22] P. Li, Y. Gu, Z. Yu, P. Gao, Y. An, J. Li, TiO2-SnO2/SO42- mesoporous solid superacid decorated nickel-based material as efficient electrocatalysts for methanol oxidation reaction, Electrochim. Acta 297 (2019) 864-871. [23] Y. Gu, H. Yang, B. Li, J. Mao, Y. An, A ternary nanooxide NiO-TiO2-ZrO2/SO42- as efficient solid superacid catalysts for electro-oxidation of glucose, Electrochim. Acta 194 (2016) 367-376. [24] P. Yang, S. Fan, Z. Chen, G. Bao, S. Zuo, C. Qi, Synthesis of Nb2O5 based solid superacid materials for catalytic combustion of chlorinated VOCs, Appl. Catal., B 239 (2018) 114-124. [25] N. Prasongthum, P. Natewong, P. Reubroycharoen, R. Idem, Solvent Regeneration of a CO2-Loaded BEA–AMP Bi-Blend Amine Solvent with the Aid of a Solid Brønsted Ce(SO4)2/ZrO2 Superacid Catalyst, Energy Fuels 33 (2) (2019) 1334-1343. [26] J.R. Sohn, S.H. Lee, J.S. Lim, New solid superacid catalyst prepared by doping ZrO2 with Ce and modifying with sulfate and its catalytic activity for acid catalysis, Catal. Today 116 (2) (2006) 143-150. [27] C. Zhang, J. Zhang, Y. Zhao, J. Sun, G. Wu, Study on the preparation and catalytic activities of SO42- promoted metal oxide solid superacid catalysts for model oil desulfurization, Catal. Lett. 146 (7) (2016) 1256-1263. [28] Y. Yu, J. Miao, C. He, J. Chen, C. Li, M. Douthwaite, The remarkable promotional effect of SO2 on Pb-poisoned V2O5-WO3/TiO2 catalysts: An in-depth experimental and theoretical study, Chem. Eng. J. 338 (2018) 191-201. [29] W. Yu, X. Wu, Z. Si, D. Weng, Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5–WO3/TiO2 catalyst, Appl. Surf. Sci. 283 (2013) 209-214. [30] P. Wang, S. Gao, H. Wang, S. Chen, X. Chen, Z. Wu, Enhanced dual resistance to alkali metal and phosphate poisoning: Mo modifying vanadium-titanate nanotubes SCR catalyst, Appl. Catal., A 561 (2018) 68-77. [31] T. Tong, J. Chen, S. Xiong, W. Yang, Q. Yang, L. Yang, Y. Peng, Z. Liu, J. Li, Vanadium-density-dependent thermal decomposition of NH4HSO4 on V2O5/TiO2 SCR catalysts, Catal. Sci. Technol 9 (14) (2019) 3779-3787. [32] X. Wang, Y. Shi, S. Li, W. Li, Promotional synergistic effect of Cu and Nb doping on a novel Cu/Ti-Nb ternary oxide catalyst for the selective catalytic reduction of NOx with NH3, Appl. Catal., B 220 (2018) 234-250. [33] H. Chang, C. Shi, M. Li, T. Zhang, C. Wang, L. Jiang, X. Wang, The effect of cations (NH4+, Na+, K+, and Ca2+) on chemical deactivation of commercial SCR catalyst by bromides, Chin. J. Catal 39 (4) (2018) 710-717. [34] L. Zheng, M. Zhou, Z. Huang, Y. Chen, J. Gao, Z. Ma, J. Chen, X. Tang, Self-protection mechanism of hexagonal WO3-based DeNOx catalysts against alkali poisoning, Environ. Sci. Technol. 50 (21) (2016) 11951-11956. [35] L. Xu, C. Wang, H. Chang, Q. Wu, T. Zhang, J. Li, New insight into SO2 poisoning and regeneration of CeO2–WO3/TiO2 and V2O5–WO3/TiO2 catalysts for low-temperature NH3–SCR, Chem. Eng. J. 170 (2011) 531-537. [36] W. Hu, X. Gao, Y. Deng, R. Qu, C. Zheng, X. Zhu, K. Cen, Deactivation mechanism of arsenic and resistance effect of SO42- on commercial catalysts for selective catalytic reduction of NO with NH3, Chem. Eng. J. 293 (2016) 118-128. [37] R. Guo, C. Lu, W. Pan, W. Zhen, Q. Wang, Q. Chen, H. Ding, N. Yang, A comparative study of the poisoning effect of Zn and Pb on Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3, Catal. Commun. 59 (2015) 136-139. [38] L. Chen, J. Li, M. Ge, The poisoning effect of alkali metals doping over nano V2O5–WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3, Chem. Eng. J. 170 (2011) 531-537. [39] Y. Yu, C. Chen, M. Ma, M. Douthwaite, C. He, J. Miao, J. Chen, C. Li, SO2 promoted in situ recovery of thermally deactivated Fe2(SO4)3-TiO2 NH3-SCR catalysts: From experimental work to theoretical study, Chem. Eng. J. 361 (2019) 820-829. [40] J. Miao, H. Li, Q. Su, Y. Yu, Y. Chen, J. Chen, J, The combined promotive effect of SO2 and HCl on Pb-poisoned commercial NH3-SCR V2O5-WO3/TiO2 catalysts, Catal. Commun. 125 (2019) 118-122. [41] M. Li, B. Liu, X. Wang, X. Yu, S. Zheng, H. Du, D. Dreisinger, Y. Zhang, A promising approach to recover a spent SCR catalyst: Deactivation by arsenic and alkaline metals and catalyst regeneration, Chem. Eng. J. 342 (2018) 1-8. [42] D. Ye, R. Qu, H. Song, C. Zheng, X. Gao, Z. Luo, M. Ni, K. Cen, Investigation of the promotion effect of WO3 on the decomposition and reactivity of NH4HSO4 with NO on V2O5–WO3-TiO2 SCR catalysts, RSC Advances 6 (2016) 55584. [43] L. Chen, J. Li, M. Ge, Promotional Effect of Ce-doped V2O5-WO3/TiO2 with Low Vanadium Loadings for Selective Catalytic Reduction of NOx by NH3, J. Phys. Chem. C 113 (2009) 21177-21184. [44] W. Shan, Y. Yu, Y. Zhang, G. He, Y. Peng, J. Li, H. He, Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NOx with NH3, Catal. Today. 376 (2021) 292-301. [45] K. Zha, L. Kang, C. Feng, L. Han, H. Li, T. Yan, P. Maitarad, L. Shi, D. Zhang, Improved NOx reduction in the presence of alkali metals by using hollandite Mn–Ti oxide promoted Cu-SAPO-34 catalysts, Environ. Sci. Nano 5 (6) (2018) 1408-1419. [46] P. Zhang, P. Wang, A. Chen, L. Han, T. Yan, J. Zhang, D. Zhang, Alkali-resistant catalytic reduction of NOx by using Ce–O–B alkali-capture sites, Environ Sci Technol. 55 (17) (2021) 11970-11978. [47] Y. Li, S. Cai, P. Wang, T. Yan, J. Zhang, D. Zhang, Improved NOx Reduction over phosphate-modified Fe2O3/TiO2 catalysts via tailoring reaction paths by in situ creating alkali-poisoning sites, Environ Sci Technol. 55 (13) (2021) 9276-9284. [48] C. Feng, P.L. Wang, X.Y. Liu, F.L. Wang, T.T. Yan, J.P. Zhang, G.Y. Zhou, D.S. Zhang, Alkali-resistant catalytic reduction of NOx via naturally coupling active and poisoning sites, Environ. Sci. Technol. 55 (16) (2021) 11255–11264. [49] Y.K. Yu, J.X. Wang, J.S. Chen, X.R. Meng, Y.T. Chen, C. He, Promotive effect of SO2 on the activity of a deactivated commercial selective catalytic reduction catalyst: an in situ DRIFT study, Ind. Eng. Chem. Res. 53 (42) (2014) 16229–16234. [50] P.L. Wang, L.J. Yan, Y.D. Gu, S. Kuboon, H.R. Li, T.T. Yan, L.Y. Shi, D.S. Zhang, Poisoning-resistant NOx reduction in the presence of alkaline and heavy metals over H-SAPO-34-supported Ce-promoted Cu-based catalysts, Environ. Sci. Technol. 54 (10) (2020) 6396–6405. [51] S. Cai, T. Xu, P. Wang, L. Han, S. Impeng, Y. Li, T. Yan, G. Chen, L. Shi, D. Zhang, Self-protected CeO2–SnO2@SO42–/TiO2 catalysts with extraordinary resistance to alkali and heavy metals for NOx reduction, Environ Sci Technol. 54 (2020) 12752-12760. [52] M.N. Khan, L.P. Han, P.L. Wang, D.S. Zhang, Tailored alkali resistance of DeNOx catalysts by improving redox properties and activating adsorbed reactive species, iScience 23 (6) (2020) 101173. [53] L.J. Yan, Y.Y. Ji, P.L. Wang, C. Feng, L.P. Han, H.R. Li, T.T. Yan, L.Y. Shi, D.S. Zhang, Alkali and phosphorus resistant zeolite-like catalysts for NOx reduction by NH3, Environ. Sci. Technol. 54 (14) (2020) 9132–9141. [54] L.J. Yan, F.L. Wang, P.L. Wang, S. Impeng, X.Y. Liu, L.P. Han, T.T. Yan, D.S. Zhang, Unraveling the unexpected offset effects of Cd and SO2 deactivation over CeO2-WO3/TiO2 catalysts for NOx reduction, Environ. Sci. Technol. 54 (12) (2020) 7697–7705. [55] Z.Z. Jia, Y.J. Shen, T.T. Yan, H.R. Li, J. Deng, J.H. Fang, D.S. Zhang, Efficient NOx abatement over alkali-resistant catalysts via constructing durable dimeric VOx species, Environ. Sci. Technol. 56 (4) (2022) 2647–2655. |