[1] T.C. Kao, C.H. Wu, G.C. Yen, Bioactivity and potential health benefits of licorice, J. Agric. Food Chem. 62(2014) 542-553.[2] R. Pompei, O. Flore, M.A. Marccialis, A. Pani, B. Loddo, Glycyrrhizic acid inhibits virus growth and inactivates virus-particles, Nature 281(1979) 689-690.[3] R. Doll, I.D. Hill, C. Hutton, D.J.V. Underwood, Clinical trial of a triterpenoid liquorice compound in gastric and duodenal ulcer, Lancet 2(1962) 793-796.[4] G. Shiota, K. Harada, M. Ishida, Y. Tomie, M. Okubo, S. Katayama, H. Ito, H. Kawasaki, Inhibition of hepatocellular carcinoma by glycyrrhizin in diethylnitrosamine-treated mice, Carcinogenesis 20(1999) 59-63.[5] S. Matsui, H. Matsumoto, Y. Sonoda, K. Ando, E. Aizu Yokota, T. Sato, T. Kasahara, Glycyrrhizin and related compounds down-regulate production of inflammatory chemokines IL-8 and eotaxin 1 in a human lung fibroblast cell line, Int. Immunopharmacol. 4(2004) 1633-1644.[6] S.J. Feng, C. Li, X.L. Xu, X.Y.Wang, Screening strains for directed biosynthesis of beta-D-mono-glucuronide-glycyrrhizin and kinetics of enzyme production, J. Mol. Catal. B Enzym. 43(2006) 63-67.[7] W.J. Tang, Y.A. Yang, H. Xu, J.B. Shi, X.H. Liu, Synthesis and discovery of 18 alpha-GAMG as anticancer agent in vitro and in vivo via down expression of protein p65, Sci. Rep. 4(2014) 5.[8] K. Mizutani, T. Kuramoto, Y. Tamura, N. Ohtake, S. Doi, M. Nakaura, O. Tanaka, Sweetness of glycyrrhetic acid 3-O-beta-D-monoglucuronide and the related glycosides, Biosci. Biotechnol. Biochem. 58(1994) 554-555.[9] K. Mizutani, T. Kambara, H. Masuda, Y. Tamura, T. Ikeda, O. Tanaka, H. Tokuda, H. Nishino, M. Kozuka, T. Konoshima, Glycyrrhetic acid monoglucuronide (MGGR): biological activities, International congress series1998225-235.[10] H. Seki, K. Ohyama, S. Sawai, M. Mizutani, T. Ohnishi, H. Sudo, T. Akashi, T. Aoki, K. Saito, T. Muranaka, Licorice beta-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin, Proc. Natl. Acad. Sci. U. S. A. 105(2008) 14204-14209.[11] M. Kanaoka, S. Yano, H. Kato, T. Nakada, Synthesis and separation of 18-betaglycyrrhetyl monoglucuronide from serum of a patient with glycyrrhizin-induced pseudo-aldosteronism, Chem. Pharm. Bull. 34(1986) 4978-4983.[12] D.-M. He, I. Kaleem, S.-Y. Qin, D.-Z. Dai, G.-Y. Liu, C. Li, Biosynthesis of glycyrrhetic acid 3-O-mono-beta-D-glucuronide catalyzed by beta-D-glucuronidase with enhanced bond selectivity in an ionic liquid/buffer biphasic system, Process Biochem. 45(2010) 1916-1922.[13] H. Sakurama, S. Kishino, Y. Uchibori, Y. Yonejima, H. Ashida, K. Kita, S. Takahashi, J. Ogawa, beta-Glucuronidase from Lactobacillus brevis useful for baicalin hydrolysis belongs to glycoside hydrolase family 30, Appl. Microbiol. Biotechnol. 98(2014) 4021-4032.[14] B.D. Wallace, H.W. Wang, K.T. Lane, J.E. Scott, J. Orans, J.S. Koo, M. Venkatesh, C. Jobin, L.A. Yeh, S. Mani, M.R. Redinbo, Alleviating cancer drug toxicity by inhibiting a bacterial enzyme, Science 330(2010) 831-835.[15] X. Song, Z. Jiang, L. Li, H. Wu, Immobilization of β-glucuronidase in lysozymeinduced biosilica particles to improve its stability, Front. Chem. Sci. Eng. 8(2014) 353-361.[16] D.H. Kim, S.W. Lee, M.J. Han, Biotransformation of glycyrrhizin to 18 betaglycyrrhetinic acid-3-O-beta-D-glucuronide by Streptococcus LJ-22, a human intestinal bacterium, Biol. Pharm. Bull. 22(1999) 320-322.[17] T. Akao, Hydrolysis of glycyrrhetyl mono-glucuronide to glycyrrhetic acid by glycyrrhetyl mono-glucuronide beta-D-glucuronidase of Eubacterium sp GLH, Biol. Pharm. Bull. 20(1997) 1245-1249.[18] T. Kuramoto, Y. Ito, M. Oda, Y. Tamura, S. Kitahara, Microbial production of glycyrrhetic acid 3-O-mono-β-D-glucuronide from glycyrrhizin by Cryptococcus magnus MG-27, Biosci. Biotechnol. Biochem. 58(1994) 455-458.[19] D.Q. Lu, H. Li, Y. Dai, P.K. Ouyang, Biocatalytic properties of a novel crude glycyrrhizin hydrolase from the liver of the domestic duck, J. Mol. Catal. B Enzym. 43(2006) 148-152.[20] D. Dionisi, J.A. Anderson, F. Aulenta, A. McCue, G. Paton, The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review, J. Chem. Technol. Biotechnol. 90(2015) 366-383.[21] C. Flores, A. Diaz-Barrera, F. Martinez, E. Galindo, C. Pena, Role of oxygen in the polymerization and de-polymerization of alginate produced by Azotobacter vinelandii, J. Chem. Technol. Biotechnol. 90(2015) 356-365.[22] S. Pandit, G. Balachandar, D. Das, Improved energy recovery from dark fermented cane molasses using microbial fuel cells, Front. Chem. Sci. Eng. 8(2014) 43-54.[23] C. Wang, X.X. Guo, X.Y. Wang, F. Qi, S.J. Feng, C. Li, X.H. Zhou, Isolation and characterization of three fungi with the potential of transforming glycyrrhizin, World J. Microbiol. Biotechnol. 29(2013) 781-788.[24] M. Papagianni, Fungal morphology and metabolite production in submerged mycelial processes, Biotechnol. Adv. 22(2004) 189-259.[25] S. Jin, S. Fu, J. Han, S. Jin, Q. Lv, Y. Lu, J. Qi,W. Wu, H. Yuan, Improvement of oral bioavailability of glycyrrhizin by sodium deoxycholate/phospholipid-mixed nanomicelles, J. Drug Target. 20(2012) 615-622.[26] D. Karadag, O.E. Koroglu, B. Ozkaya, M. Cakmakci, S. Heaven, C. Banks, A review on fermentative hydrogen production fromdairy industrywastewater, J. Chem. Technol. Biotechnol. 89(2014) 1627-1636.[27] S.P. Zou, G.Y. Liu, I. Kaleem, C. Li, Purification and characterization of a highly selective glycyrrhizin-hydrolyzing beta-glucuronidase from Penicillium purpurogenum Li-3, Process Biochem. 48(2013) 358-363.[28] S.P. Zou, S.Y. Guo, I. Kaleem, C. Li, Purification, characterization and comparison of Penicillium purpurogenum beta-glucuronidases expressed in Escherichia coli and Pichia pastoris, J. Chem. Technol. Biotechnol. 88(2013) 1913-1919.[29] A.E. Posch, C. Herwig, O. Spadiut, Science-based bioprocess design for filamentous fungi, Trends Biotechnol. 31(2013) 37-44.[30] X. Li, Y. Lin, M. Chang, Q. Jin, X. Wang, Efficient production of arachidonic acid by Mortierella alpina through integrating fed-batch culture with a two-stage pH control strategy, Bioresour. Technol. 18(2015) 275-282.[31] H.D. Guo, Q.F. Zhang, J.G. Chen, X.C. Shangguang, Y.X. Guo, Large scale purification of puerarin from Puerariae Lobatae Radix through resins adsorption and acid hydrolysis, J. Chromatogr. B 980(2015) 8-15.[32] T. Wang, S. Lu, Q. Xia, Z. Fang, S. Johnson, Separation and purification of amygdalin from thinned bayberry kernels by macroporous adsorption resins, J. Chromatogr. B 975(2015) 52-58. |