[1] P. Billemont, B. Coasne, G. De Weireld, Adsorption of carbon dioxide, methane, and their mixtures in porous carbons:Effect of surface chemistry, water content, and pore disorder, Langmuir 29(10) (2013) 3328-3338. [2] C.M.White, D.H. Smith, K.L. Jones, et al., Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery a review, Energy Fuel 19(3) (2005) 659-724. [3] K. Damen, A. Faaij, F. Van Bergen, et al., Identification of early opportunities for CO2 sequestration-Worldwide screening for CO2-EOR and CO2-ECBM projects, Energy 30(10) (2005) 1931-1952. [4] S. Ottiger, R. Pini, G. Storti, et al., Adsorption of pure carbon dioxide and methane on dry coal from the Sulcis Coal Province (SW Sardinia, Italy), Environ. Prog. 25(4) (2006) 355-364. [5] S. Day, G. Duffy, R. Sakurovs, et al., Effect of coal properties on CO2 sorption capacity under supercritical conditions, Int. J. Greenhouse Gas Control 2(3) (2008) 342-352. [6] D.-F. Zhang, Y.-J. Cui, B. Liu, et al., Supercritical puremethane and CO2 adsorption on various rank coals of China:Experiments and modeling, Energy Fuel 25(4) (2011) 1891-1899. [7] M. Mastalerz, H. Gluskoter, J. Rupp, Carbon dioxide and methane sorption in high volatile bituminous coals from Indiana, USA, Int. J. Coal Geol. 60(1) (2004) 43-55. [8] B.K. Prusty, Sorption of methane and CO2 for enhanced coalbed methane recovery and carbon dioxide sequestration, J. Nat. Gas Chem. 17(1) (2008) 29-38. [9] S. Ottiger, R. Pini, G. Storti, et al., Competitive adsorption equilibria of CO2 and CH4 on a dry coal, Adsorption 14(4-5) (2008) 539-556. [10] H.J. Kim, Y. Shi, J. He, et al., Adsorption characteristics of CO2 and CH4 on dry and wet coal from subcritical to supercritical conditions, Chem. Eng. J. 171(1) (2011) 45-53. [11] L. Brochard, M. Vandamme, R.J.-M. Pellenq, et al., Adsorption-induced deformation of microporous materials:Coal swelling induced by CO2-CH4 competitive adsorption, Langmuir 28(5) (2012) 2659-2670. [12] L. Huang, L. Zhang, Q. Shao, et al., Simulations of binarymixture adsorption of carbon dioxide and methane in carbon nanotubes:Temperature, pressure, and pore size effects, J. Phys. Chem. C 111(32) (2007) 11912-11920. [13] Y. Kurniawan, S.K. Bhatia, V. Rudolph, Simulation of binary mixture adsorption of methane and CO2 at supercritical conditions in carbons, AIChE J. 52(3) (2006) 957-967. [14] H. Hu, X. Li, Z. Fang, et al., Small-molecule gas sorption and diffusion in coal:Molecular simulation, Energy 35(7) (2010) 2939-2944. [15] C. Tenney, C. Lastoskie, Molecular simulation of carbon dioxide adsorption in chemically and structurally heterogeneous porous carbons, Environ. Prog. 25(4) (2006) 343-354. [16] Y. Liu, J.Wilcox, Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons, Environ. Sci. Technol. 46(3) (2012) 1940-1947. [17] P. Billemont, B. Coasne, G. De Weireld, An experimental and molecular simulation study of the adsorption of carbon dioxide and methane in nanoporous carbons in the presence of water, Langmuir 27(3) (2010) 1015-1024. [18] Y. Liu, J. Wilcox, Molecular simulation studies of CO2 adsorption by carbon model compounds for carbon capture and sequestration applications, Environ. Sci. Technol. 47(1) (2012) 95-101. [19] M.R. Narkiewicz, J.P.Mathews, Visual representation of carbon dioxide adsorption in a low-volatile bituminous coal molecular model, Energy Fuel 23(10) (2009) 5236-5246. [20] W.H. Wiser, Conversion of bituminous coal to liquids and gases:Chemistry and representative processes, Magnetic resonance, Springer 1984, pp. 325-350. [21] G. Carlson, Computer simulation of the molecular structure of bituminous coal, Energy Fuel 6(6) (1992) 771-778. [22] T. Takanohashi, M. Iino, K. Nakamura, Simulation of interaction of coal associates with solvents using the molecular dynamics calculation, Energy Fuel 12(6) (1998) 1168-1173. [23] T. Takanohashi, K. Nakamura, M. Iino, Computer simulation of methanol swelling of coal molecules, Energy Fuel 13(4) (1999) 922-926. [24] K. Nakamura, S. Murata, M. Nomura, CAMD study of coal model molecules. 1. Estimation of physical density of coal model molecules, Energy Fuel 7(3) (1993) 347-350. [25] E. Rogel, L. Carbognani, Density estimation of asphaltenes using molecular dynamics simulations, Energy Fuel 17(2) (2003) 378-386. [26] J. Yang, Y. Ren, A.-M. Tian, et al., COMPASS force field for 14 inorganicmolecules, He, Ne, Ar, Kr, Xe, H2, O2, N2, NO, CO, CO2, NO2, CS2, and SO2, in liquid phases, J. Phys. Chem. B 104(20) (2000) 4951-4957. [27] H. Sun, P. Ren, J. Fried, The COMPASS force field:Parameterization and validation for phosphazenes, Comput. Theor. Polym. Sci. 8(1) (1998) 229-246. [28] L.D. Gelb, K. Gubbins, Pore size distributions in porous glasses:A computer simulation study, Langmuir 15(2) (1999) 305-308. [29] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 60(2) (1938) 309-319. [30] T.T. Tsotsis, H. Patel, B.F. Najafi, et al., Overview of laboratory andmodeling studies of carbon dioxide sequestration in coal beds, Ind. Eng. Chem. Res. 43(12) (2004) 2887-2901. [31] D.-J. Zhang, F.Wang, X.-P. Li, et al., Effect of solvent extraction on pore character and granularity of bituminous coal, J. Fuel Chem. Technol. 32(1) (2004) 18-22. [32] D.F. Li, Q.F. Liu, W. Philipp, et al., High-pressure sorption isotherms and sorption kinetics of CH4 and CO2 on coals, Fuel 89(3) (2010) 569-580. [33] Q.Y. Yang, D.H. Liu, C.L. Zhong, et al., Development of computational methodologies for metal-organic frameworks and their application in gas separations, Chem. Rev. 113(10) (2013) 8261-8323. [34] M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials, Chem. Mater. 13(10) (2001) 3169-3183. |