[1] A. Pak, T. Mohammadi, S.M. Hosseinalipour, V. Allahdini, CFD modeling of porous membranes, Desalination 222(1-3) (2008) 482-488. [2] Z.X. Zhong, W.X. Li, W.H. Xing, N.P. Xu, Crossflow filtration of nanosized catalysts suspension using ceramic membranes, Sep. Purif. Technol. 76(3) (2011) 223-230. [3] A.L. Ahmad, N.H.M. Yasin, C.J.C. Derek, J.K. Lim, Harvesting of microalgal biomass using MF membrane:Kinetic model, CDE model and extended DLVO theory, J. Membr. Sci. 446(2013) 341-349. [4] Y.Q. Fan, H. Qi, N.P. Xu, Advance in preparation techniques of porous ceramic membranes, J. Chem. Ind. Eng. 64(1) (2013) 107-115(in Chinese). [5] H. Jiang, L.Meng, R.Z. Chen,W.Q. Jin,W.H. Xing, N.P. Xu, Progress on porous ceramic membrane reactors for heterogeneous catalysis over ultrafine and nano-sized catalysts, Chin. J. Chem. Eng. 21(2) (2013) 205-215. [6] P.Wu, Y.Z. Xu, Z.X. Huang, J.C. Zhang, A review of preparation techniques of porous ceramic membranes, J. Ceram. Process. Res. 16(1) (2015) 102-106. [7] G.Y. Meng, Q. Dong, X.Q. Liu, D.K. Peng, Current progresses on inorganic porous separation membranes, Membr. Sci. Technol. 23(4) (2003) 261-268. [8] E.E.McLeary, J.C. Jansen, F. Kapteijn, Zeolite based films, membranes and membrane reactors:Progress and prospects, Microporous Mesoporous Mater. 90(1-3) (2006) 198-220. [9] Y.S. Lin, I. Kumakiri, B.N. Nair, H. Alsyouri, Microporous inorganic membranes, Sep. Purif. Methods 31(2) (2002) 229-379. [10] H.C. Yang, Y.F. Chen, C. Ye, L.S. Wan, Z.K. Xu, Advances in porous organic-inorganic composite membranes, Prog. Chem. 27(8) (2015) 1014-1024(in Chinese). [11] G. Keir, V. Jegatheesan, A review of computational fluid dynamics applications in pressure-driven membrane filtration, Rev. Environ. Sci. Biotechnol. 13(2) (2014) 183-201. [12] A.P. Rao, N.V. Desai, R. Rangarajan, Inorganicmembranes:Newmaterials for separation technology, J. Sci. Ind. Res. India 56(9) (1997) 518-522. [13] W.B. Peng, Optimizating ceramic membrane geometry by computational fluid dynamics(Ph. D. Thesis) Nanjing University of Technology, China, 2008(in Chinese). [14] F. Springer, R. Ghidossi, E. Carretier, D. Veyret, D. Dhaler, P. Moulin, Study of the effect of geometry on wall shear stress and permeate flux for ceramic membranes:CFD and experimental approaches, Eng. Appl. Comp. Fluid 4(1) (2010) 17-28. [15] R. Ghidossi, E. Carretier, D. Veyret, D. Dhaler, P.Moulin, Optimizing the compacity of ceramic membranes, J. Membr. Sci. 360(1-2) (2010) 483-492. [16] A.S. Berman, Laminar flow in channels with porouswalls, J. Appl. Phys. 24(9) (1953) 1232-1235. [17] R.M. Terrill, Laminar flow in a uniformly porous channel with large injection, Aeronaut. Q. 16(1965) 323-332. [18] M.J.D.S. Galowin, Investigation of laminar flow in a porous pipe with variable wall suction, AIAA J. 12(1974) 1585-1594. [19] S.K. Karode, Laminar flow in channels with porous walls, revisited, J. Membr. Sci. 191(1-2) (2001) 237-241. [20] V. Nassehi, Modelling of combined Navier-Stokes and Darcy flows in crossflow membrane filtration, Chem. Eng. Sci. 53(6) (1998) 1253-1265. [21] D.B. Das, V. Nassehi, R.J.Wakeman, A finite volume model for the hydrodynamics of combined free and porous flow in sub-surface regions, Adv. Environ. Res. 7(1) (2002) 35-58. [22] K. Damak, A. Ayadi, B. Zeghmati, P. Schmitz, A new Navier-Stokes and Darcy's law combined model for fluid flow in crossflow filtration tubular membranes, Desalination 161(1) (2004) 67-77. [23] R. Ghidossi, D. Veyret, P. Moulin, Computational fluid dynamics applied to membranes:State of the art and opportunities, Chem. Eng. Process. 45(6) (2006) 437-454. [24] E. Pellerin, K. Darcovich, S. Lin, C. Tam, E. Michelitsch, Turbulent transport in membrane modules by CFD simulation in two dimensions, J. Membr. Sci. 100(2) (1995) 139-153. [25] Z. Cao, D.E.Wiley, A.G. Fane, CFD simulations of net-type turbulence promoters in a narrow channel, J. Membr. Sci. 185(2) (2001) 157-176. [26] V.V. Ranade, A. Kumar, Fluid dynamics of spacer filled rectangular and curvilinear channels, J. Membr. Sci. 271(1-2) (2006) 1-15. [27] V.V. Tarabara, M.R. Wiesner, Computational fluid dynamics modeling of the flow in a laboratory membrane filtration cell operated at low recoveries, Chem. Eng. Sci. 58(1) (2003) 239-246. [28] P. Dolecek, Mathematical modeling of permeate flow in multi-channel ceramic membrane, J. Membr. Sci. 100(2) (1995) 111-119. [29] P. Dolecek, J. Cakl, Permeate flow in hexagonal 19-channel inorganic membrane under filtration and backflush operating modes, J. Membr. Sci. 149(2) (1998) 171-179. [30] Z. Yang, J.C. Cheng, C. Yang, B. Liang, Study on permeability of asymmetric ceramic membrane tubes with CFD simulation, J. Chem. Ind. Eng. 66(8) (2015) 3120-3129(in Chinese). [31] W.B. Peng, H. Qi, G.L. Chen, L.L. Zou, W.H. Xing, N.P. Xu, CFD modeling of permeate process in 19-channel porous ceramic membranes, J. Chem. Ind. Eng. 58(8) (2007) 2021-2026(in Chinese). |