[1] J. Bernstein, Polymorphism in Molecular Crystals, Oxford University Press, USA, 2002. [2] S. Datta, D.J.W. Grant, Crystal structures of drugs:Advances in determination, prediction and engineering, Nat. Rev. Drug Discov. 3(1) (2004) 42-57. [3] B.O'Sullivan, The Application of In situ Analysis to Crystallization ProcessDevelopment. Ph.D. Thesis University College Dublin, Ireland, 2005. [4] L.Walter-Levy, The crystalline varieties of D-mannitol, C. R. Acad. Sc. Paris, Ser. C. 267(1968) 1779. [5] F.R. Fronczek, H.N. Kamel, M. Slattery, Three polymorphs (alpha, beta and delta) of D-mannitol at 100 K, Acta Crystallogr. Sect. C:Cryst. Struct. Commun. 59(10) (2003) o567-o570. [6] A. Burger, J.O. Henck, S. Hetz, J.M. Rollinger, A.A. Weissnicht, H. Stottner, Energytemperature diagram and compression behavior of the polymorphs of D-mannitol, J. Pharm. Sci. 89(4) (2000) 457-468. [7] C. Nunes, R. Suryanarayanan, C.E. Botez, P.W. Stephens, Characterization and crystal structure of D-mannitol hemihydrate, J. Pharm. Sci. 93(11) (2004) 2800-2809. [8] J. Cornel, P. Kidambi, M. Mazzotti, Precipitation and transformation of the three polymorphs of D-mannitol, Ind. Eng. Chem. Res. 49(12) (2010) 5854-5862. [9] W. Su, C. Li, H. Hao, J. Whelan, M. Barrett, B. Glennon, Monitoring the liquid phase concentration by Raman spectroscopy in a polymorphic system, J. Raman Spectrosc. 46(11) (2015) 1150-1156. [10] I.S. Lee, A.Y. Lee, A.S.Myerson, Concomitant polymorphismin confined environment, Pharm. Res. 25(4) (2008) 960-968. [11] M. Svard, F.L. Nordstrom, T. Jasnobulka, A.C. Rasmuson, Thermodynamics and nucleation kinetics of m-Aminobenzoic acid polymorphs, Cryst. Growth Des. 10(2010) 195-204. [12] W. Ostwald, Uber die vemeintliche Isomerie des roten und gelben quecksilberoxyds und die oberflachen-spannung fester korper, Z. Phys. Chem. 34(1900) 495-512. [13] M. Kitamura, Crystallization behavior and transformation kinetics of L-histidine polymorphs, J. Chem. Eng. Jpn 26(3) (1993) 303-307. [14] T. Ono, H.J.M. Kramer, J.H. terHorst, P.J. Jansens, Process modeling of the polymorphic transformation of L-glutamic acid, Cryst. Growth Des. 4(6) (2004) 1161-1167. [15] M.W. Hermanto, N.C. Kee, R.B.H. Tan,M.S. Chiu, R.D. Braatz, Robust Bayesian estimation of kinetics for the polymorphic transformation of L-glutamic acid crystals, AIChE J 54(12) (2008) 3248-3259. [16] M. Kitamura, T. Ishizu, Growth kinetics and morphological change of polymorphs of L-glutamic acid, J. Cryst. Growth 209(1) (2000) 138-145. [17] N.C.S. Kee, P.D. Arendt, L. May Goh, R.B.H. Tan, R.D. Braatz, Nucleation and growth kinetics estimation for l-phenylalanine hydrate and anhydrate crystallization, CrystEngComm 13(4) (2011) 1197-1209. [18] L. Carpentier, K. Filali Rharrassi, P. Derollez, Y. Guinet, Crystallization and polymorphism of l-arabitol, Thermochim. Acta 556(0) (2013) 63-67. [19] J. Scholl, C. Lindenberg, L. Vicum, J. Brozio, M. Mazzotti, Precipitation of alpha L-glutamic acid determination of growth kinetics, Faraday Discuss. 136(2007) 247-264. [20] A. Kuldipkumar, G.S. Kwon, G.G.Z. Zhang, Determining the growth mechanism of tolazamide by induction time measurement, Cryst. Growth Des. 7(2) (2007) 234-242. [21] T.C. Marwick, An X-ray study of mannitol, dulcitol, and mannose, Proc. R. Soc. London, Ser. A 131(818) (1931) 621-633. [22] A. Rye, H. Sorum, Crystalline modifications of D-mannitol, Acta Chem. Scand. 6(1952) 1128-1129. [23] H.M. Berman, G.A. Jeffrey, R.D. Rosenstein, The crystal structures of the alpha and beta forms of D-mannitol, Acta Crystallogr. Sect. B:Struct. Sci. B24(1968) 442-449. [24] W. Kaminsky, Crystal optics of D-mannitol, C6H14O6 crystal growth, structure, basic physical properties, birefingence, optical activity, Faraday effect, electro-optic effects and model calculations, Z. Kristallogr. 212(1997) 283-296. [25] H.S. Kim, G.A. Jeffrey, R.D. Rosenstein, The crystal structure of the K form of D-mannitol, Acta Crystallogr. Sect. B:Struct. Sci. B24(1968) 1449-1455. [26] C.E. Botez, P.W. Stephens, C. Nunes, R. Suryanarayanan, Crystal structure of anhydrous delta D-mannitol, Powder Diffract. 18(3) (2003) 214-218. [27] P. Groth, Chemical Crystallography, Part Three:Aliphatic and Aromatic Hydrocarbon Compounds, Verlag von Wilhelm Engelmann, Leipzig, 1910. [28] I. Pitkanen, P. Perkkalainen, H. Rautiainen, Thermoanalytical studies on phases of D-mannitol, Thermochim. Acta 214(1) (1993) 157-162. [29] T.B. Grindley, M.S. McKinnon, R.E. Wasylishen, Towards understanding 13C-NMR chemical shifts of carbohydrates in the solid state. The spectra of D-mannitol polymorphs and of DL-mannitol, Carbohydr. Res. 197(1990) 41-52. [30] B. Debord, C. Lefebvre, A.M. Guyot-Hermann, J. Hubert, R. Bouché, J. Guyot, Study of different crystalline forms of mannitol:Comparative behaviour under compression, Drug Dev. Ind. Pharm. 13(9-11) (1987) 1533-1546. [31] A.I. Kim, M.J. Akers, S.L. Nail, The physical state of mannitol after freeze-drying:Effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute, J. Pharm. Sci. 87(8) (1998) 931-935. [32] B. O'Sullivan, P. Barrett, G. Hsiao, A. Carr, B. Glennon, In situ monitoring of polymorphic transitions, Org. Process. Res. Dev. 7(2003) 977-982. [33] D. Giron, Thermal-analysis and calorimetricmethods in the characterization of polymorphs and solvates, Thermochim. Acta 248(1995) 1-59. [34] K. Nakagawa,W. Murakami, J. Andrieu, S. Vessot, Freezing step controls the mannitol phase composition heterogeneity, Chem. Eng. Res. Des. 87(2009) 1017-1027. [35] X. Liao, R. Krishnamurthy, R. Suryanarayanan, Influence of the active pharmaceutical ingredient concentration on the physical state of mannitol-implications in freezedrying, Pharm. Res. 22(11) (2005) 1978-1985. [36] D. Dixon, S. Tchessalov, A. Barry, N. Warne, The impact of protein concentration on mannitol and sodium chloride crystallinity and polymorphism upon lyophilization, J. Pharm. Sci. 98(9) (2009) 3419-3429. [37] S.K. Poornachary, J.V. Parambil, P.S. Chow, R.B.H. Tan, J.Y.Y. Heng, Nucleation of elusive crystal polymorphs at the solution-substrate contact line, Cryst. Growth Des. 13(3) (2013) 1180-1186. [38] R.B. Hammond, K. Pencheva, K.J. Roberts, Structural variability within, and polymorphic stability of, nano-crystalline molecular clusters of L-glutamic acid and D-mannitol, modelled with respect to their size, shape and ‘crystallisability’, CrystEngComm 14(3) (2012) 1069-1082. [39] W.Y. Su, H.X. Hao, M. Barrett, B. Glennon, The impact of operating parameters on the polymorphic transformation of D-mannitol characterized in situ with Raman spectroscopy, FBRM, and PVM, Org. Process. Res. Dev. 14(6) (2010) 1432-1437. [40] B. O'Sullivan, B.Glennon, Application of in situ FBRMand ATR-FTIR to themonitoring of the polymorphic transformation of D-mannitol, Org. Process. Res. Dev. 9(6) (2005) 884-889. [41] J.L. Crisp, S.E. Dann, C.G. Blatchford, Antisolvent crystallization of pharmaceutical excipients from aqueous solutions and the use of preferred orientation in phase identification by powder X-ray diffraction, Eur. J. Pharm. Sci. 42(5) (2011) 568-577. [42] W. Su, H. Hao, B. Glennon, M. Barrett, Spontaneous polymorphic nucleation of D-mannitol in aqueous solution monitored with Raman spectroscopy and FBRM, Cryst. Growth Des. 13(12) (2013) 5179-5187. [43] J.W. Mullin, Crystallization, 4th Ed, London, 2001. [44] M. Zhi, Y. Wang, J. Wang, Determining the primary nucleation and growth mechanism of cloxacillin sodium in methanol-butyl acetate system, J. Cryst. Growth 314(1) (2011) 213-219. |