[1] J. Morud, S. Skogestad, Analysis of instability in an industrial ammonia reactor, AICHE J. 44(4) (1998) 888-895. [2] R. Angira, Simulation and Optimization of an Auto-thermal Ammonia Synthesis Reactor, International Journal of Chemical Reactor Engineering 9(1) (2014) 42-43. [3] A. Murase, H. Roberts, A. Converse, Optimal thermal design of an autothermal ammonia synthesis reactor, Ind. Eng. Chem. Process Des. Dev. 9(4) (1970) 503-513. [4] R. Baddour, P. Brian, B. Logeais, J. Eymery, Steady-state simulation of an ammonia synthesis converter, Chem. Eng. Sci. 20(4) (1965) 281-292. [5] T. Mohammad, K. Azam, The Optimization of an Ammonia Synthesis Reactor Using Genetic Algorithm, International Journal of Chemical Reactor Engineering, 6(A113), 2008. [6] F.G. Areed, M.A. Badr, S.F. Saraya, M.S. Elksasy, M.M. Abdelsalam, Decoupled sliding mode control for a multivariable nonlinear system, Int. J. Comput. Appl. 55(6) (2012) 25-32. [7] E. Holter, M. Hovd, Feedforward for stabilization of an ammonia synthesis reactor, MSc. Thesis, Norwegian University of Science and Technology, Norwegian, 2010. [8] Z. Umair, et al., Kinetic model for ammonia and urea production processes, International Conference on Process Systems Engineering, Elsevier 2013, pp. 25-27. [9] M.A. Satyro, et al., Modelling urea processes:A new thermodynamic model and software integration paradigm, Chem. Eng. (2003). [10] M.M. Saafan, M.M. Abdelsalam, M.S. Elksasy, et al., A sliding mode controller for urea plant, IJCSIS J. 14(3) (2016) 115-126. [11] M. Frejacques, Theoretical basis of the industrial synthesis of urea, Chimie et Industrie. 60(1) (1948) 22-35. [12] S. Zendehboudi, G. Zahedi, A. Bahadori, et al., A dual approach for modelling and optimization of industrial urea reactor, Can. J. Chem. Eng. 92(3) (2014) 469-485. [13] I.M. Fahmy, et al., Real-time control of industrial urea evaporation process using model predictive control, Chem. Eng. Process Technol. (2015), http://dx.doi.org/10.4172/2157-7048.1000227(2015). [14] O. Mauricio, A. Manozca, J.J. Espinosa, J. Vandewalle, Control of the synthesis section of a urea plant by means of an MPC controller, Computer Aided Chemical Engineering 21(06) (2006) 1305-1310. [15] A. Alanqar, M. Ellis, P.D. Christofides, Economic model predictive control of nonlinear process systems using empirical models, AIChE J 61(3) (2015) 4953-4958. [16] M. Shyamalagowri, et al., Model predictive control design for nonlinear process control reactor case study, IOSR J. 7(1) (2013) 88-94. [17] Z. Yu, Y. Liang, Design and realization of optimization system of urea production process based on BP neural network, ICCASM, 10, 2010, pp. 368-371. [18] M. Khaki, I. Yusoff, N. Islami, Application of the artificial neural network and neurofuzzy system for assessment of groundwater quality, Clean-Soil, Air, Water 43(4) (2015) 551-560. [19] A. Al-Hmouz, J. Shen, R. Al-Hmouz, J. Yan, Modeling and simulation of an adaptive neuro-fuzzy inference system (ANFIS) for mobile learning, IEEE Trans. Learn. Technol. 5(3) (2012) 226-237. [20] A. Swetapadma, A. Yadav, High-speed directional relaying using adaptive neurofuzzy inference system and fundamental component of currents, IEEJ Transactions on Electrical and Electronic Engineering 10(6) (2015) 653-663. [21] L. Hung, H. Chung, Decoupled sliding-mode with fuzzy-neural network controller for nonlinear systems, Int. J. Approx. Reason. 46(2007) 74-97. |