[1] J. Lehmann, J. Gaunt, M. Rondon, Bio-char sequestration in terrestrial ecosystems-A review, Mitig. Adapt. Strat. Gl.11(2006) 403-427. [2] A. Masulili, W.H. Utomo, M.S. Syechfani, Rice husk bio-char for rice based cropping system in acid soil 1. The characteristics of rice husk bio-char and its influence on the properties of acid sulfate soils and rice growth in west Kalimantan, Indonesia, J. Agric. Sci. 2(2010) 39-47. [3] M. Yamato, Y. Okimori, I.F. Wibowo, Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea, peanut and soil chemical properties in south Sumatra, Indonesia, Soil Sci. Plant Nutr. 52(2006) 489-495. [4] S. Yoshizawa, S. Tanaka, M. Ohata, Proliferation effect of aerobic microorganisms during composting of rice bran by addition of biomass charcoal, Proceedings of the International Agrichar Conference, Terrigal NSW, Australia 2007, pp. 26-27. [5] D.D. Warnock, J. Lehmann, T.W. Kuyper, Mycorrhizal responses to bio-char in soilconcepts and mechanisms, Plant Soil 300(2007) 9-20. [6] M. Saito, T. Marumoto, Inoculation with arbuscular mycorrhizal fungi:The status quo in Japan and the future prospects, Plant Soil 244(2002) 273-279. [7] J. Meng, W.M. Zhang, S.B. Wang, Z.J. Xu, W.F. Chen, Developments and prospect of carbonization and returning technology of agro-forestry residue, J. Shenyang Agric. Univ. 42(2011) 387-392. [8] M. Rondon, J. Ramirez, J. Lehmann, Charcoal additions reduce net emissions of greenhouse gases to the atmosphere, Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration, 2005, March 21-24, Baltimore, MD 2005, p. 208. [9] J. Lehmann, S. Joseph, Bio-Char for Environmental Management:Science and Technology, Earthscan Publications Ltd, London, 2009. [10] K.A. Spokas, W.C. Koskinen, J.M. Baker, D.C. Reicosky, Impacts of wood-chip bio-char additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil, Chemosphere 77(2009) 574-581. [11] B. Glaser, J. Lehmann, W. Zech, Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-A review, Biol. Fertil. Soils 35(2002) 219-230. [12] C. Steiner, B. Glaser, W. Teixeira, Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal, J. Plant Nutr. Soil Sci. 171(2008) 893-899. [13] B. Liang, J. Lehmann, D. Solomon, Black carbon increases cation exchange capacity in soils, Soil Sci. Soc. Am. J. 70(2006) 1719-1730. [14] D.A. Wardle, O. Zackrisson, M.C. Nilsson, The charcoal effect in Boreal forests:Mechanisms and ecological consequences, Oecologia 115(1998) 419-426. [15] M.W.I.Schmidt, A.G. Noack, Black carbon in soils and sediments:analysis, distribution, implications, and current challenges, Glob. Biogeochem. Cycles 14(2000) 777-793. [16] B. Glaser, L. Haumaier, G. Guggenberger, The "Terra Preta" phenomenon:A model for sustainable agriculture in the humid tropics, Naturwissenschaften 88(2001) 37-41. [17] F.J. Tian, B.Q. Li, Y. Chen, C.Z. Li, Formation of NOx precursors during the pyrolysis of coal and biomass. Part V. Pyrolysis of a sewage sludge, Fuel 81(2002) 2203-2208. [18] Q.Q. Ren, C.S. Zhao, NOx and N2O precursors from biomass pyrolysis:Nitrogen transformation from amino acid, Environ. Sci. Technol. 46(2012) 4236-4240. [19] Z.H. Wang, Research on Form Transformation and Releasing Regulation of Fuel-N during the Pyrolysis and Gasification(Ph.D. Dissertation) Huazhong University of Science and Technology, Wuhan, 2011. [20] H. Zhang, R. Xiao, D. Wang, G. He, S. Shao, J. Zhang, Z. Zhong, Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres, Bioresour. Technol. 102(2011) 4258-4264. [21] C. Jindarom, V. Meeyoo, T. Rirksomboon, B. Kitiyanan, P. Rangsunvigit, Production of bio-oil by oxidative pyrolysis of sewage sludge in rotating fixed bed reactor, Asian J. Energy Environ. 4(2006) 401-409. [22] H. Zheng, Z.Y. Wang, X. Deng, J. Zhao, Y. Luo, J. Novak, S. Herbert, B.S. Xing, Characteristics and nutrient values of biochars produced from giant reed at different temperatures, Bioresour. Technol. 130(2013) 463-471. [23] C. Boman, Particulate and Gaseous Emissions from Residential Biomass Combustion(Ph.D. Dissertation) Umeå University, Sweden, 2005. [24] L. Tsechansky, E.R. Graber, Methodological limitations to determining acidic groups at biochar surfaces via the Boehm titration, Carbon 66(2014) 730-733. [25] E.M. Smit, An ultra-micromethodfor the determination of total nitrogen in biological fluids based on Kjeldahl digestion and enzymatic estimation of ammonia, Clin. Chim. Acta 4(1979) 129-135. [26] A. Boenke, The standards, measurements and testing programme (SMT), the European support to standardisation, measurements and testing projects, Mikrochim. Acta Supplement 15(1998) 387-392. [27] E. Borai, M. Eid, H. Aly, Determination of REEs distribution in monazite and xenotime minerals by ion chromatography and ICP-AES, Anal. Bioanal. Chem. 372(2002) 537-541. [28] W.R. Knolle, A simple modification of a flame photometer for routine trace potassium analysis, Appl. Spectrosc. 27(2) (1973) 142. [29] P.Fu, W. Yi,X. Bai, et al., Effectoftemperature ongas composition and char structural features of pyrolyzed agricultural residues, Bioresour. Technol. 102(17) (2011) 8211-8219. [30] S. Wang, B. Gao, A.R. Zimmerman, et al., Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass, Chemosphere 134(2015) 257-262. [31] W. Wu, M. Yang, Q. Feng, et al., Chemical characterization of rice straw-derived biochar for soil amendment, Biomass Bioenergy 47(2012) 268-276. [32] Q.Q. Ren, C.S. Zhao, W.U. Xin, et al., Formation of NOx precursors during wheat straw pyrolysis and gasification with O2 and CO2, Fuel 89(5) (2010) 1064-1069. [33] J. Zhang, J. Liu, R. Liu, Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate, Bioresour. Technol. 176(2015) 288-291. [34] L. Tsechansky, E.R. Graber, Methodological limitations to determining acidic groups at biochar surfaces via the Boehm titration, Carbon 66(2014) 730-733. |