[1] M.A. Ashraf, K.S. Balkhair, A.J.K. Chowdhury, M.M. Hanafiah, Treatment of Taman Beringin landfill leachate using the column technique, Desalin. Water Treat. 149(2019) 370-387. [2] M. Mishra, M. Chauhan, Biosorption as a Novel Approach for Removing Aluminium from Water Treatment Plant Residual-A Review, In Water Quality Management, Springer, (2018) 93-99. [3] S.A. Al-Muhtaseb, M.H. El-Naas, S. Abdallah, Removal of aluminum from aqueous solutions by adsorption on date-pit and BDH activated carbons, J. Hazard. Mater. 158(2008) 300-307. [4] A.A. Al-Raad, M.M. Hanafiah, A.S. Naje, M.A. Ajeel, A. O Basheer, T. Ali Aljayashi, M. Ekhwan Toriman, Treatment of saline water using electrocoagulation with combined electrical connection of electrodes, Processes 7(2019) 242. [5] M. Al-Harahsheh, M. Batiha, S. Kraishan, H. Al-Zoubi, Precipitation treatment of effluent acidic wastewater from phosphate-containing fertilizer industry:Characterization of solid and liquid products, Sep. Purif. Technol. 123(2014) 190-199. [6] J. Shen, A. Schäfer, Removal of fluoride and uranium by nanofiltration and reverse osmosis:A review, Chemosphere 117(2014) 679-691. [7] C.S. Lee, J. Robinson, M.F. Chong, A review on application of flocculants in wastewater treatment, Process Saf. Environ. Prot. 92(2014) 489-508. [8] H. Yuan, Z. He, Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation:A review, Bioresour. Technol. 195(2015) 202-209. [9] H. Tounsadi, A. Khalidi, M. Farnane, M. Abdennouri, N. Barka, Experimental design for the optimization of preparation conditions of highly efficient activated carbon from Glebionis coronaria L. and heavy metals removal ability, Process Saf. Environ. Prot. 102(2016) 710-723. [10] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:A review, J. Environ. Manage. 92(2011) 407-418. [11] N. Marsidi, H.A. Hasan, S.R.S. Abdullah, A review of biological aerated filters for iron and manganese ions removal in water treatment, J. Water Process. Eng. 23(2018) 1-12. [12] N.I.H.A. Aziz, M.M. Hanafiah, M.Y.M. Ali, Sustainable biogas production from agrowaste and effluents-A promising step for small-scale industry income, Renewable Energy 132(2019) 363-369. [13] N.I.H.A. Aziz, M.M. Hanafiah, S.H. Gheewala, A review on life cycle assessment of biogas production:Challenges and future perspectives in Malaysia, Biomass Bioenergy 122(2019) 361-374. [14] S. Çoruh, F. Geyikçi, E. Kılıç, U. Çoruh, The use of NARX neural network for modeling of adsorption of zinc ions using activated almond shell as a potential biosorbent, Bioresour. Technol. 151(2014) 406-410. [15] A.R. Lucaci, D. Bulgariu, I. Ahmad, G. Lisă, A.M. Mocanu, L. Bulgariu, Potential use of biochar from various waste biomass as biosorbent in Co (II) removal processes, Water 11(2019) 1565. [16] R.R. Karri, J. Sahu, N. Jayakumar, Optimal isotherm parameters for phenol adsorption from aqueous solutions onto coconut shell based activated carbon:Error analysis of linear and non-linear methods, J. Taiwan Inst. Chem. Eng. 80(2017) 472-487. [17] P.S. Thue, G.S. dos Reis, E.C. Lima, J.M. Sieliechi, G. Dotto, A.G. Wamba, S.L. Dias, F.A. Pavan, Activated carbon obtained from sapelli wood sawdust by microwave heating for o-cresol adsorption, Res. Chem. Intermed. 43(2017) 1063-1087. [18] M. Danish, T. Ahmad, R. Hashim, N. Said, M.N. Akhtar, J. Mohamad-Saleh, O. Sulaiman, Comparison of surface properties of wood biomass activated carbons and their application against rhodamine B and methylene blue dye, Surf. Interfaces 11(2018) 1-13. [19] H. Sayğlı, F. Güzel, High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation:Process optimization, characterization and dyes adsorption, J. Clean Prod. 113(2016) 995-1004. [20] M.K. Manikama, A.A. Halima, M.M. Hanafiaha, R.R. Krishnamoorthyb, Removal of ammonia nitrogen, nitrate, phosphorus and COD from sewage wastewater using palm oil boiler ash composite adsorbent, Desalin. Water Treat. 149(2019) 23-30. [21] K. Cronje, K. Chetty, M. Carsky, J. Sahu, B. Meikap, Optimization of chromium (VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride, Desalination 275(2011) 276-284. [22] S. Chakravarty, S. Bhattacharjee, K. Gupta, M. Singh, H.T. Chaturvedi, S. Maity, Adsorption of zinc from aqueous solution using chemically treated newspaper pulp, Bioresour. Technol. 98(2007) 3136-3141. [23] I. Ozdemir, M. Şahin, R. Orhan, M. Erdem, Preparation and characterization of activated carbon from grape stalk by zinc chloride activation, Fuel Process. Technol. 125(2014) 200-206. [24] Y. Chen, Y. Zhu, Z. Wang, Y. Li, L. Wang, L. Ding, X. Gao, Y. Ma, Y. Guo, Application studies of activated carbon derived from rice husks produced by chemical-thermal process-A review, Adv. Colloid Interface Sci. 163(2011) 39-52. [25] R.R. Karri, J. Sahu, Process optimization and adsorption modeling using activated carbon derived from palm oil kernel shell for Zn (II) disposal from the aqueous environment using differential evolution embedded neural network, J. Mol. Liq. 265(2018) 592-602. [26] J. Sreńscek-Nazzal, U. Narkiewicz, A.W. Morawski, R.J. Wróbel, B. Michalkiewicz, The increase of the microporosity and CO2 adsorption capacity of the commercial activated carbon CWZ-22 by KOH treatment, Microporous Mesoporous Mater. (2016) 2-19. [27] U. Moralı, H. Demiral, S. Şensöz, Optimization of activated carbon production from sunflower seed extracted meal:Taguchi design of experiment approach and analysis of variance, J. Clean Prod. 189(2018) 602-611. [28] A. O Basheer, M.M. Hanafiah, M. Abdulhakim Alsaadi, Y. Al-Douri, M. Malek, M. Mohammed Aljumaily, S. Saadi Fiyadh, Synthesis and characterization of natural extracted precursor date palm fibre-based activated carbon for aluminum removal by RSM optimization, Processes 7(2019) 249. [29] R. Gottipati, S. Mishra, Process optimization of adsorption of Cr (VI) on activated carbons prepared from plant precursors by a two-level full factorial design, Chem. Eng. J. 160(2010) 99-107. [30] M. Vaez, A. Zarringhalam Moghaddam, S. Alijani, Optimization and modeling of photocatalytic degradation of azo dye using a response surface methodology (RSM) based on the central composite design with immobilized titania nanoparticles, Ind. Eng. Chem. Res. 51(2012) 4199-4207. [31] Z. Ab Ghani, M.S. Yusoff, N.Q. Zaman, M.F.M.A. Zamri, J. Andas, Optimization of preparation conditions for activated carbon from banana pseudo-stem using response surface methodology on removal of color and COD from landfill leachate, Waste Manage. 62(2017) 177-187. [32] S. Banerjee, G.C. Sharma, M. Chattopadhyaya, Y.C. Sharma, Kinetic and equilibrium modeling for the adsorptive removal of methylene blue from aqueous solutions on of activated fly ash (AFSH), J. Environ. Chem. Eng. 2(2014) 1870-1880. [33] M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, R.K. Ibrahim, M.A. Hashim, Lead removal from water by choline chloride based deep eutectic solvents functionalized carbon nanotubes, J. Mol. Liq. 222(2016) 883-894. [34] X.W. Chen, D.S. Su, R. Schlögl, Immobilization of CNFs on the surface and inside of the modified activated carbon, Physica Status Solidi (b) 243(2006) 3533-3536. [35] H.M. Alayan, M.A. Alsaadi, M.K. AlOmar, M.A. Hashim, Growth and optimization of carbon nanotubes in powder activated carbon for an efficient removal of methylene blue from aqueous solution, Environ. Technol. 40(18) (2018) 1-16. [36] A.K. Tovar, L.A. Godínez, F. Espejel, R.-M. Ramírez-Zamora, I. Robles, Optimization of the integral valorization process for orange peel waste using a design of experiments approach:Production of high-quality pectin and activated carbon, Waste Manage. 85(2019) 202-213. [37] S. Begum, M. Ahmaruzzaman, Biogenic synthesis of SnO2/activated carbon nanocomposite and its application as photocatalyst in the degradation of naproxen, Appl. Surf. Sci. 449(2018) 780-789. [38] Z. Aslam, R.A. Shawabkeh, I.A. Hussein, N. Al-Baghli, M. Eic, Synthesis of activated carbon from oil fly ash for removal of H2S from gas stream, Appl. Surf. Sci. 327(2015) 107-115. [39] M. Shoaib, H.M. Al-Swaidan, Optimization and characterization of sliced activated carbon prepared from date palm tree fronds by physical activation, Biomass Bioenergy 73(2015) 124-134. [40] M.A. Islam, I. Tan, A. Benhouria, M. Asif, B. Hameed, Mesoporous and adsorptive properties of palm date seed activated carbon prepared via sequential hydrothermal carbonization and sodium hydroxide activation, Chem. Eng. J. 270(2015) 187-195. [41] M. Poletto, H.L. Ornaghi, A.J. Zattera, Native cellulose:structure, characterization and thermal properties, Materials 7(2014) 6105-6119. [42] A. Zubrik, M. Matik, S. Hredzák, M. Lovás, Z. Danková, M. Kováčová, J. Briančin, Preparation of chemically activated carbon from waste biomass by singlestage and two-stage pyrolysis, J. Clean Prod. 143(2017) 643-653. [43] Y. Kang, X. Wei, G. Liu, M. Mu, X. Ma, Y. Gao, Z. Zong, CO2-hierarchical activated carbon prepared from coal gasification residue:Adsorption equilibrium, isotherm, kinetic and thermodynamic studies for methylene blue removal, Chin. J. Chem. Eng. 28(16) (2020) 1694-1700. [44] A.H. Jawad, K. Ismail, M.A.M. Ishak, L.D. Wilson, Conversion of Malaysian lowrank coal to mesoporous activated carbon:Structure characterization and adsorption properties, Chin. J. Chem. Eng. 27(2019) 1716-1727. [45] B. Hameed, I. Tan, A. Ahmad, Preparation of oil palm empty fruit bunchbased activated carbon for removal of 2, 4, 6-trichlorophenol:Optimization using response surface methodology, J. Hazard. Mater. 164(2009) 1316-1324. [46] K. Foo, B. Hameed, Preparation and characterization of activated carbon from pistachio nut shells via microwave-induced chemical activation, Biomass Bioenergy 35(2011) 3257-3261. [47] J. Phiri, J. Dou, T. Vuorinen, P.A. Gane, T.C. Maloney, Highly porous willow wood-derived activated carbon for high-performance supercapacitor electrodes, ACS Omega 4(2019) 18108-18117. [48] A. Nasrullah, A. Bhat, A. Naeem, M.H. Isa, M. Danish, High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue, Int. J. Biol. Macromol. 107(2018) 1792-1799. [49] M. Sivachidambaram, J.J. Vijaya, L.J. Kennedy, R. Jothiramalingam, H.A. AlLohedan, M.A. Munusamy, E. Elanthamilan, J.P. Merlin, Preparation and characterization of activated carbon derived from the Borassus flabellifer flower as an electrode material for supercapacitor applications, New J. Chem. 41(2017) 3939-3949. [50] L.C. Oliveira, E. Pereira, I.R. Guimaraes, A. Vallone, M. Pereira, J.P. Mesquita, K. Sapag, Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents, J. Hazard. Mater. 165(2009) 87-94. [51] M. Auta, B. Hameed, Optimized waste tea activated carbon for adsorption of Methylene Blue and Acid Blue 29 dyes using response surface methodology, Chem. Eng. J. 175(2011) 233-243. [52] I. Tan, B. Hameed, A. Ahmad, Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon, Chem. Eng. J. 127(2007) 111-119. [53] K. Foo, B. Hameed, Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption, Chem. Eng. J. 166(2011) 792-795. [54] Y.-R. Son, S.-J. Park, Preparation and characterization of mesoporous activated carbons from nonporous hard carbon via enhanced steam activation strategy, Mater. Chem. Phys. 242(2020), 122454. [55] S. Charola, H. Patel, S. Chandna, S. Maiti, Optimization to prepare porous carbon from mustard husk using response surface methodology adopted with central composite design, J. Clean Prod. 223(2019) 969-979. [56] H.M. Alayan, M.A. Alsaadi, R. Das, A. Abo-Hamad, R.K. Ibrahim, M.K. AlOmar, M. A. Hashim, The formation of hybrid carbon nanomaterial by chemical vapor deposition:An efficient adsorbent for enhanced removal of methylene blue from aqueous solution, Water Sci. Technol. 77(2018) 1714-1723. [57] R.K. Ibrahim, A. El-Shafie, L.S. Hin, N.S.B. Mohd, M.M. Aljumaily, S. Ibraim, M.A. AlSaadi, A clean approach for functionalized carbon nanotubes by deep eutectic solvents and their performance in the adsorption of methyl orange from aqueous solution, J. Environ. Manage. 235(2019) 521-534. [58] J. Valentín-Reyes, R. García-Reyes, A. García-González, E. Soto-Regalado, F. Cerino-Córdova, Adsorption mechanisms of hexavalent chromium from aqueous solutions on modified activated carbons, J. Environ. Manage. 236(2019) 815-822. [59] M. Mahdavi, A. Ebrahimi, A.H. Mahvi, A. Fatehizadeh, F. Karakani, H. Azarpira, Experimental data for aluminum removal from aqueous solution by raw and iron-modified granular activated carbon, Data in Brief 17(2018) 731-738. [60] M.E. Goher, A.M. Hassan, I.A. Abdel-Moniem, A.H. Fahmy, M.H. Abdo, S.M. Elsayed, Removal of aluminum, iron and manganese ions from industrial wastes using granular activated carbon and Amberlite IR-120H, The Egyptian J. Aquatic Res. 41(2015) 155-164. [61] T.A. Saleh, M. Tuzen, A. Sarı, Magnetic activated carbon loaded with tungsten oxide nanoparticles for aluminum removal from waters, J. Environ. Chem. Eng. 5(2017) 2853-2860. |