[1] United Nations, UN water, water quality and wastewater, https://www.unwater.org/water-facts/quality-and-wastewater. [2] H. Daraei, A. Mittal, M. Noorisepehr, F. Daraei, Kinetic and equilibrium studies of adsorptive removal of phenol onto eggshell waste, Environ. Sci. Pollut. Res. 20(2013) 4603-4611. [3] S.M. Alardhi, J.M. Alrubaye, T.M. Albayati, Adsorption of methyl green dye onto MCM-41:equilibrium, kinetics and thermodynamic studies, Desalin. Water Treat. 179(2020) 323-331. [4] T.M. Albayati, A.M. Doyle, Purification of aniline and nitrossubistituted aniline contaminants from aqueous solution using beta zeolite, Chem. Bulgarian J. Sci. Edu. 23(1) (2014) 105-114. [5] M. Shourian, K. Noghabi, H. Zahiri, T. Bagheri, G. Karaballaei, M. Mollaei, I. Rad, S. Ahadi, J. Raheb, H. Abbasi, Efficient phenol degradation by a newly characterized Pseudomonas sp. SA01 isolated from pharmaceutical wastewaters, Desalination 246(2009) 577-594. [6] M.H. EL-Naas, S. Al-Zuhair, S. Makhlouf, Batch degradation of phenol in a spouted bed bioreactor system, J. Ind. Eng. Chem. 16(2010) 267-272. [7] T.M. Albayati, Application of nanoporous material MCM-41 in a membrane adsorption reactor (MAR) as a hybrid process for removal of methyl orange, Desalin. Water Treat. 151(2019) 138-144. [8] A. Agrios, K. Gray, E. Weitz, Photocatalytic transformation of 2,4,5-trichlorophenol on TiO2 under sub-band-gap illumination, Langmuir 19(2003) 1402-1409. [9] C. Yang, Y. Qian, L. Zhang, J. Feng, Solvent extraction process development and onsite trial-plant for phenol removal from industrial coal-gasification wastewater, Chem. Eng. J. 117(2006) 179-185. [10] A.B. Pandit, P.R. Gogate, S. Mujumdar, Ultrasonic degradation of 2:4:6 trichlorophenol in presence of TiO2 catalyst, Ultrason. Sonochem. 8(2001) 227-231. [11] I.D. Buchanan, J.A. Micell, Peroxidase catalyzed removal of aqueous phenol, Biotechnol. Bioeng. 54(1997) 251-261. [12] T.M. Albayati, Anaam A. Sabri, Dalia B. Abed, Functionalized SBA-15 by amine group for removal of Ni(II) heavy metal ion in the batch adsorption system, Desalin. Water Treat. 174(2020) 301-310. [13] S.M. Alardhi, Talib M. Albayati, Jamal M. Alrubaye, Adsorption of the methyl green dye pollutant from aqueous solution using mesoporous materials MCM-41 in a fixed-bed column, Heliyon 6(2020) e03253. [14] Akbar Soliemanzadeh, Majid Fekri, Synthesis of clay-supported nanoscale zerovalent iron using green tea extract for the removal of phosphorus from aqueous solutions, Chin. J. Chem. Eng. 25(7) (2017) 924-930. [15] K.S.V. Gottimukkala, P. Harika Reddy, Deeveka Zamare, Green synthesis of iron nanoparticles using green tea leaves extract, J. Nanomed. Biotherap. Discov. 7(1) (2017) 1000151. [16] T. Wang, X. Jin, Z. Chen, M. Megharaj, R. Naidu, Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater, Sci. Total Environ. 466(2014) 210-213. [17] Satarupa Sahu, Chandrakant Thakur, S. Noyel Victoria, Green synthesis and characterization of zero valent iron nanoparticles from the peel extract of musaceae (banana), Int. J. Eng. Technol. Manag. Appl. Sci. 5(4) (2017) 2349-4476. [18] E. Önal, T. Yatkin, M. Ergüt, A. Özer, Green synthesis of iron nanoparticles by aqueous extract of eriobotrya japonica leaves as a heterogeneous fenton-like catalyst:degradation of basic red 46, Int. J. Chem. Eng. Appl. 8(5) (2017) 327-333. [19] K.S. Prasad, P. Gandhi, K. Selvaraj, Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of as (III) and as (V) from aqueous solution, Appl. Surf. Sci. 317(2014) 1052-1059. [20] Y. Wei, Z. Zheng, L. Tan, E.P. Tsang, Green synthesis of Fe nanoparticles using Citrus maxima peels aqueous extracts, Mater. Lett. 185(2016) 384-386. [21] R. Eljamal, O. Eljamal, A.M.E. Khalil, B.B. Saha, N. Matsunaga, Improvement of the chemical synthesis efficiency of nanoscale zero-valent iron particles, J. Environ. Chem. Eng. 6(4) (2018) 4727-4735. [22] S. Takami, O. Eljamal, A.M.E. Khalil, R. Eljamal, N. Matsunaga, Development of continuous system based on nanscale zero valent iron particles for phosphorus removal, J. JSCE (2019) 30-42. [23] O. Eljamal, T. Shubair, A. Tahara, Y. Sugihara, N. Matsunaga, Iron based nanoparticles-zeolite composites for the removal of cesium from aqueous solutions, J. Mol. Liq. 277(2019) 613-623. [24] Z. Yang, X. Qiu, Z. Fang, T. Pokeung, Transport of nano zero-valent iron supported by mesoporous silica microspheres in porous media, Water Sci. Technol. 17(12) (2015) 1800-1805. [25] E. Petala, K. Dimos, A. Douvalis, T. Bakas, J. Tucek, R. Zboril, M.A. Karakassides, Nanoscale zero-valent iron supported on mesoporous silica:characterization and reactivity for Cr(VI) removal from aqueous solution, J. Hazard. Mater. 261(2013) 295-306. [26] B. Geng, Z. Jin, T. Li, X. Qi, Preparation of chitosan-stabilized Fe0 nanoparticles for removal of hexavalent chromium in water, Sci. Total Environ. 407(18) (2009) 4994-5000. [27] J. Wang, G. Liu, T. Li, C. Zhou, Physicochemical studies toward the removal of Zn (II) and Pb(II) ions through adsorption on montmorillonite-supported zero-valent iron nanoparticles, RSC Adv. 5(2015) 29859-29871. [28] Y. Xu, D. Zhao, Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles, Water Res. 41(2007) 2101-2108. [29] T. Wang, J. Lin, Z. Chen, M. Megharaj, R. Naidu, Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution, J. Clean. Prod. 83(2014) 413-419. [30] A.A. Hendi, M. Rashad, Photo-induced changes in nano-copper oxide for optoelectronic applications, Phys. B Condens. Matter 538(2018) 185-190. [31] I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc. 38(1916) 2221-2295. [32] T.M. Albayati, Khairi R. Kalash, Polycyclic aromatic hydrocarbons adsorption from wastewater using different types of prepared mesoporous materials MCM-41in batch and fixed bed column, Process. Saf. Environ. Prot. 133(2020) 124-136. [33] H.M. Freundlich, Colloid Capillary Chemistry, Methuen, London (1926) 114-122. [34] H.M. Freundlich, Over the adsorption in solution, J. Phys. Chem. 57(1906) 385-471. [35] X.S. Wang, Y. Qin, Equilibrium sorption isotherms for of Cu2+ on rice bran, Process Biochem. 40(2005) 677-680. [36] Y.S. Ho, G. McKay, D.A.J. Wase, C.F. Foster, Study of the sorption of divalent metal ions on to peat, Adsorpt. Sci. Technol. 18(2000) 639-650. [37] B.H. Hameed, Spent tea leaves:a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions, J. Hazard. Mater. 161(2009) 753-759. [38] H. How, W. Yaacob, Synthesis and characterization of marine clay-supported nano zero valent iron, Am. J. Environ. Sci. 11(2) (2015) 115-124. [39] J. Srodon, V.A. Drits, D.K. McCarty, J.C.C. Hsieh, D.D. Eberl, Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparation, Clay Clay Miner. 49(6) (2001) 514-528. [40] A.M.E. Khalil, O. Eljamal, R. Eljamal, Y. Sugihara, Treatment and regeneration of nano-scale zerovalent iron spent in water remediation, EVERGREEN Joint J. Novel Carbon Resour. Sci. Green Asia Strat. 04(01) (2017) 21-28. [41] A.M. Alkafajy, T.M. Albayati, High performance of magnetic mesoporous modification for loading and release of meloxicam in drug delivery implementation, Mater. Today Commun. 23(2020) 100890. [42] S. Karlapudi, C.H. Prasad, H. Kumar S, Jyothi NVV, P. Venkateswarlu, Bio inspired green synthesis of Fe3O4 magnetic nanoparticles using cassia occidentals leaves extract and efficient catalytic activity for degradation of 4-nitro phenol, Pharm. Lett. 10(1) (2018) 58-65. [43] M. Fazelzadeh, K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri, R. Khosravi, A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions Adv. Powder Technol. 28(1) (2017) 122-130. [44] K. Sravanthi, D. Ayodhya, P. Yadgiri Swamy, Green synthesis, characterization of biomaterial-supported zero-valent iron nanoparticles for contaminated water treatment, J. Anal. Sci. Technol. 9(2018) 3. [45] V. Mahavi, T. Prasad, A. Reddy, B. Ravindra Reddy, G. Madhavi, Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium, Spectrochim, Acta A Mol. Biomol. Spectr. 116(2013) 17-25. [46] X. Wang, L. Huang, Z. Chen, M. Megharaj, R. Naidu, Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite, Ind. Crop. Prod. 51(2013) 342-347. [47] G. Sangeetha, S. Rajeshwari, R. Venckatesh, Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract:structure and optical properties, Mater. Res. Bull. 46(2011) 2560-2566. [48] L. Huang, X. Wang, Z. Chen, M. Megharaj, R. Naidu, Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green, Spectrochim. Acta A Mol. Biomol. Spectrosc. 117(2014) 801-804. [49] J. Coates, Interpretation of infrared spectra, a practical approach, Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd, New Jersey, 2006. [50] M. Iram, C. Guo, Ishfaq A. GuanYP, H.Z. Liu, Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres, J. Hazard. Mater. 181(2010) 1039-1050. [51] T.M. Albayati, S.E. Wilkinson, A.A. Garforth, A.M. Doyle, Heterogeneous alkane reactions over nanoporous catalysts, Transp. Porous Media 104(2) (2014) 315-333. [52] Y.A. Abd Al-Khodor, T.M. Albayati, Employing sodium hydroxide in desulfurization of the actual heavy crude oil:theoretical optimization and experimental evaluation, Process. Saf. Environ. Prot. 136(2020) 334-342. [53] Ç. Üzüm, T. Shahwan, A.E. Eroğlo, K.R. Hallam, K.T.B. Scott, I. Lieberwirth, Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and CO2+ ions, Appl. Clay Sci. 43(2009) 172-181. [54] J. Guo, Catalytic Wet Oxidation over Pillared Clay Catalyst in Packed-bed Reactors:Experiments and Modeling, a Dissertation Presented to the Sever Institute of Washington University in Partial Fulfillment of the Requirements for the Degree of Doctor of Science, Saint Louis, Missouri, USA, 2005. [55] G.Y. Al Kindi, F.H.A.L. Ani, A comparison of Al-Fe pillared iraqi clays for catalytic wet air oxidation, IOP Conference Series:Materials Science and Engineering, vol. 579, 2019, p. 012045. [56] F. An, R. Du, X. Wang, M. Wan, X. Dai, J. Gao, Adsorption of phenolic compounds from aqueous solution using salicylic acid type adsorbent, J. Hazard. Mater. 201-202(2012) 74-81. [57] T.M. Albayati, G.M. Alwan, O. Sabah Mahdy, High performance methyl orange capture on magnetic nano porous MCM-prepared by incipient wetness impregnation method, Korean J. Chem. Eng. 34(1) (2017) 259-265. [58] M. Basha Allabaksh, B. Kumar Mandal, M. Kumar Kesarla, K. Siva Kumar, P. Sreedhara Reddy, Preparation of stable zero valent iron nanoparticles using different chelating agents, J. Chem. Pharm. Res. 2(5) (2010) 67-74. [59] S.A. Kim, S. Kamala-Kannan, K.J. Lee, Y.J. Park, P.J. Shea, W.H. Lee, H.M. Kim, B.T. Oh, Removal of Pb (II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite, Chem. Eng. J. 217(2013) 54-60. [60] A.R. Esfahani, A.F. Firouzi, G. Sayyad, A. Kiasat, Lead removal from aqueous solutions using polyacrylic acid-stabilized zero-valent iron nanoparticles, Res. J. Environ. Earth Sci. 5(9) (2013) 548-555. [61] G. Atun, G. Hisarli, W.S. Sheldrick, M. Muhlerler, Adsorptive removal of methylene blue from colored effluents on fuller's earth, J. Colloid Interface Sci. 261(2003) 32-39. [62] X. Yang, S. Yang, S. Yang, J. Hu, X. Tan, X. Wang, Effect of pH, ionic strength and temperature on sorption of Pb (II) on NKF-6 zeolite studied by batchtechnique, Chem. Eng. J. 168(1) (2011) 86-93. [63] W. Yana, b Bagbia A., S. Tiwaria Sarswatc, D. Mohanc, A. Pandeyb, P.R. Solankia, Synthesis of l-cysteine stabilized zero-valent iron (nZVI)nanoparticles for lead remediation from water, Environ. Nanotechnol. Monit. Manag. 7(2017) 34-45. [64] L. Tonghao, L. Yanhui, D. Qiuju, S. Jiankun, J. Yuqin, Y. Guangming, W. Zonghua, X. Yanzhi, Z. Wei, W. Kunlin, Z. Hongwei, W. Dehai, Colloids Surf. B Bio Interf. 90(2012) 197. [65] K.G. Bhattacharyya, A. Sharma, Kinetics and thermodynamics of methylene blue sorption on neem (azadirachta indica) leaf powder, Dyes Pigments 65(2005) 51-59. [66] Z. Bouberka, A. Khenifi, N. Benderdouche, Z. Derriche, Removal of supranol yellow 4GL by adsorption onto Cr-intercalated montmorillonite, J. Hazard. Mater. 133(1-3) (2006) 154-156. [67] D. Pathania, S. Sharma, P. Singh, Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast, Arab. J. Chem. 04(021) (2013) 1445-1451. [68] I. Mobasherpour, E. Salahi, M. Ebrahimi, Thermodynamics and kinetics of adsorption of Cu (II) from aqueous solutions onto multiwalled carbon nanotubes, J. Saudi Chem. Soc. 18(6) (2014) 792-801. |