[1] Z. Xue, S. Wang, L. Lin, L. Chen, M. Liu, L. Feng, L. Jiang, A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation, Adv. Mater. 23(37) (2011) 4270-4273. [2] R.K. Gupta, G.J. Dunderdale, M.W. England, A. Hozumi, Oil/water separation techniques:a review of recent progresses and future directions, J. Mater. Chem. A 5(31) (2017) 16025-16058. [3] R. Secerov Sokolovic, S. Sokolovic, S. Sevic, Oily water treatment using a new steadystate fiber-bed coalescer, J. Hazard. Mater. 162(1) (2009) 410-415. [4] X. Huang, T.T. Lim, Performance and mechanism of a hydrophobic-oleophilic kapok filter for oil/water separation, Desalination 190(1-3) (2006) 295-307. [5] A.L. Ahmad, M.A. Majid, B.S. Ooi, Functionalized PSf/SiO2 nanocomposite membrane for oil-in-water emulsion separation, Desalination 268(1-3) (2011) 266-269. [6] W. Jin, A. Toutianoush, B. Tieke, Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes, Langmuir 19(7) (2003) 2550-2553. [7] C.R. Crick, J.A. Gibbins, I.P. Parkin, Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil-water separation, J. Mater. Chem. A 1(19) (2013) 5943. [8] D. Tian, X. Zhang, Y. Tian, Y. Wu, X. Wang, J. Zhai, L. Jiang, Photo-induced water-oil separation based on switchable superhydrophobicity-superhydrophilicity and underwater superoleophobicity of the aligned ZnO nanorod array-coated mesh films, J. Mater. Chem. 22(37) (2012) 19652-19657. [9] D. Tian, X. Zhang, X. Wang, J. Zhai, L. Jiang, Micro/nanoscale hierarchical structured ZnO mesh film for separation of water and oil, Phys. Chem. Chem. Phys. 13(32) (2011) 14606-14610. [10] X. Li, Y. Cao, G. Kang, H. Yu, X. Jie, Q. Yuan, Surface modification of polyamide nanofiltration membrane by grafting zwitterionic polymers to improve the antifouling property, J. Appl. Polym. Sci. 131(23) (2014) 41144. [11] K.Y. Yeh, K.H. Cho, L.J. Chen, Preparation of superhydrophobic surfaces of hierarchical structure of hybrid from nanoparticles and regular pillar-like pattern part of the "langmuir 25th year:wetting and superhydrophobicity" special issue, Langmuir 25(24) (2009) 14187-14194. [12] S. Gao, X. Li, L. Li, X. Wei, A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation, Nano Energy 33(2017) 334-342. [13] H.J. Li, Y.M. Cao, J.J. Qin, X.M. Jie, T.H. Wang, J.H. Liu, Q. Yuan, Development and characterization of anti-fouling cellulose hollow fiber UF membranes for oil-water separation, J. Membr. Sci. 279(1-2) (2006) 328-335. [14] K.E. Arnold, P.J. Koszela, Droplet settling vs. retention time theories for sizing oil/water separator, SPE Production Engineering 5(1) (1990) 59-64. [15] P.C. Chen, Z.K. Xu, Mineral-coated polymer membranes with superhydrophilicity and underwater superoleophobicity for effective oil/water separation, Sci. Rep. 3(2013), 2776. [16] D. Hu, X. Li, L. Li, C. Yang, Designing high-caliber nonwoven filter mats for coalescence filtration of oil/water emulsions, Sep. Purif. Technol. 149(2015) 65-73. [17] S. Basu, A study on effect of wetting on mechanism of coalescence in a model coalescer, J. Colloid Interface Sci. 159(1) (1993) 68-76. [18] X. Li, D. Hu, L. Cao, C. Yang, Sensitivity of coalescence separation of oil-water emulsions using stainless steel felt enabled by LBL self-assembly and CVD, RSC Adv. 5(87) (2015) 71345-71354. [19] J. Wang, A. Raza, Y. Si, L. Cui, J. Ge, B. Ding, J. Yu, Synthesis of superamphiphobic breathable membranes utilizing SiO2 nanoparticles decorated fluorinated polyurethane nanofibers, Nanoscale 4(23) (2012) 7549-7556. [20] S. Feng, Z. Zhong, F. Zhang, Y. Wang, W. Xing, Amphiphobic polytetrafluoroethylene membranes for efficient organic aerosol removal, Appl. Mater. Interfaces 8(13) (2016) 8773-8781. [21] S. Liang, Y. Kang, A. Tiraferri, E.P. Giannelis, X. Huang, M. Elimelech, Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles, Appl. Mater. Interfaces 5(14) (2013) 6694-6703. [22] D. Hu, L. Li, Y. Li, C. Yang, Restructuring the surface of polyurethane resin enforced filter media to separate surfactant stabilized oil-in-water emulsions via coalescence, Sep. Purif. Technol. 172(2017) 59-67. [23] Q. Zhang, L. Li, Y. Li, L. Cao, C. Yang, Surface wetting-driven separation of surfactantstabilized water-oil emulsions, Langmuir 34(19) (2018) 5505-5516. [24] Y. Li, L. Cao, D. Hu, C. Yang, Uncommon wetting on a special coating and its relevance to coalescence separation of emulsified water from diesel fuel, Sep. Purif. Technol. 176(2017) 313-322. [25] D. Hu, Q. Zhang, C. Yang, X. Wang, Process diagnosis of coalescence separation of oilin-water emulsions-two case studies, J. Dispers. Sci. Technol. 40(5) (2018) 745-755. [26] G. MacKay, S. Mason, The gravity approach and coalescence of fluid drops at liquid interfaces, Can. J. Chem. Eng. 41(5) (1963) 203-212. [27] M.J. Rosen, Relationship of structure to properties in surfactants. III. Adsorption at the solid-liquid interface from aqueous solution, J. Am. Oil Chem. Soc. 52(11) (1975) 431-435. [28] A.B.D. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc. 40(1944) 546-551. [29] R.N. Wenzel, Resistance of solid surface to wetting by water, Ind. Eng. Chem. 28(8) (1936) 988-994. [30] A. Lafuma, D. Quere, Superhydrophobic states, Nat. Mater. 2(7) (2003) 457-460. [31] M. Denesuk, B.J.J. Zelinski, N.J. Kreidl, D.R. Uhlmann, Dynamics of incomplete wetting on porous materials, J. Colloid Interface Sci. 168(1) (1994) 142-151. [32] K. Honda, M. Morita, H. Otsuka, A. Takahara, Molecular aggregation structure and surface properties of poly(fluoroalkyl acrylate) thin films, Macromolecules 38(13) (2005) 5699-5705. [33] M. Jin, S. Li, J. Wang, Z. Xue, M. Liao, S. Wang, Underwater superoleophilicity to superoleophobicity:role of trapped air, Chem. Commun. 48(96) (2012) 11745-11747. [34] Z. Pan, S. Cao, J. Li, Z. Du, F. Cheng, Anti-fouling TiO2 nanowires membrane for oil/water separation:synergetic effects of wettability and pore size, J. Membr. Sci. 572(2019) 596-606. [35] P. Kajitvichyanukul, Y.T. Hung, L.K. Wang, Membrane Technologies for Oil-Water Separation. Membrane and Desalination Technol, Humana Press, Totowa, NJ, 2011639-668. [36] S.S. Sareen, P.M. Rose, R.C. Gudesen, R.C. Kintner, Coalescence in fibrous beds, AIChE J. 12(6) (1966) 1045-1050. [37] L.A. Spielman, S.L. Goren, Capture of small particles by London forces from lowspeed liquid flows, Environ. Sci. Technol. 4(2) (1970) 135-140. [38] R.N. Hazlett, Fibrous bed coalescence of water. Steps in the coalescence process, Ind. Eng. Chem. Fundam. 8(4) (1969) 625-632. [39] H. Beatty, Ethyl Corp, Mich. Final Tech. Rept, Ferndale, 1966. [40] J.F. Bitten, Coalescence of water droplets on single fibers, J. Colloid Interface Sci. 33(2) (1970) 265-271. [41] G.D.M. Mackay, S.G. Mason, The gravity approach and coalescence of fluid drops at liquid interfaces, Can. J. Chem. Eng. 41(5) (1963) 203-212. |